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Preprocessing Imprecise Points for Furthest Distance Queries

Vahideh Keikha∗ Sepehr Moradi† Ali Mohades‡

Abstract

Given is a set of regions in Rd, in the region-based un-
certainty model. We show here how to preprocess these
regions so that if one point per region is specified with
precise coordinates, in the query phase, the diameter
of the query points can be computed faster than the
scratch. We discuss a (1 + ϵ)-approximation algorithm
with running time O( n

ϵd
) for answering such queries,

for a set of pairwise disjoint unit balls, after spending
O(n log n+ n

ϵd
) time for preprocessing.

1 Introduction

It is a common assumption in different areas of compu-
tational geometry that the input is a set of points. How-
ever, we usually face the problems at which the input
data are not precise due to several resources, namely in-
cluding bounded precision of measuring devices, round-
ing errors in calculations, etc. In some cases, we al-
ready know in which region each particular point would
lie, however, the exact locations of the points are still
unknown. One then may assume such a region as an
imprecise point, that could be a disk, rectangle, line
segment, etc.

In recent years, frequent analysis of uncertain data
has been actively researched in computation modeling
of real-world problems. There are numerous exact and
approximation algorithms for processing uncertain data.
Designing an exact algorithm that works for all possible
instances may produce a big data structure and may
need time-consuming calculations. As a result, these
algorithms demand much time and space as their in-
puts are indeed superset compared to the standard al-
gorithm, where the input is a set of points. There have
been efforts to resolve this problem by careful analysis of
the worst-case or the best-case behavior of the input in-
stances, however, all cases are likely to happen. In some
other scenarios, producing the lower and upper bound
for feasible solutions may suffice. Another standpoint
is preprocessing uncertain data for speeding-up the fur-
ther computations on precise instances received later.
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Figure 1: Problem definition: (a) A set D of 6 imprecise
points modeled as unit balls, (b) and the diameter of two
different realizations of D.

In this paper, we address the diameter problem in this
setting.

Problem 1 (Diameter Query) Let D =
{d1, . . . , dn} be a set of balls in Rd. For a given
query point set Q = {p1, . . . , pn}, where pi ∈ di, our
objective is to find the diameter of Q in o(dn2) time,
after preprocessing. We call the set Q a realization of
D; see Figure 1.

Related work. The region-based model of impreci-
sion was introduced and extensively studied by Löffler
and van Kreveld. Several models are already established
for processing a set of imprecise points for (possibly)
speeding up the sorting problem [17], computing an ar-
bitrary triangulation [9, 18], the Delaunay triangula-
tion [2, 11], and the convex hull of a query set in R2 [4].
In particular, it is previously shown that for a set of im-
precise points modeled as convex polygons, with totally
O(n) vertices, an arbitrary triangulation of a query set
with one point in each region can be computed in O(n)
time after spendingO(n log n) for the preprocessing [18].
The same problem was also studied in [11] at which the
same results also hold for computing a Delaunay trian-
gulation. See also [2, 9]. For a set of imprecise points in
the plane modeled as lines, it is shown that the prepro-
cessing does not speed up the closest pair computation,
the Delaunay triangulation, and the sorting problem on
the realizations received later [4], where they lie on given
lines known in advance. However, in the same paper, it
is shown that preprocessing a set of lines, can speed up
computing the convex hull of the points (on those lines)
received later.

The diameter of a set of points is the maximum pair-
wise distance between the points in the set. Comput-
ing the diameter of a set of points has a long history.
It is shown that computing the diameter in Rd needs
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Ω(n log n) time in any algebraic decision tree, by a re-
duction from the set disjointedness problem. But the
best-known algorithm for computing the diameter in Rd

takes O(min{nd log n, n2 logs−2 n, n2ds−2}) time, where
s ≈ 2.376 [5, 13]. However, this running time can be im-
proved for specific values of d > 2 [5]. For d = 2, near
linear approximation algorithm exists for the diameter
problem [8]. We refer the reader to [5, 12] for a complete
list of algorithms for the diameter problem in different
dimensions. We note that the diameter problem has ex-
tensively used as a black box in database queries. See,
e.g., [6].

Contribution. We show there exists a (1 + ϵ)-
approximation for approximating the diameter queries
on pairwise disjoint unit disks, that takes O( n

ϵd
) time,

after spending O(n log n + n
ϵd
) time for preprocessing

(Sec 3.2).

2 Preliminaries

For a set Q of points in Rd, let diam(S) denote the
diameter of Q. In the following, we recall the definitions
we use from the literature.

Let G = (S,E) be a geometric graph on Q. Let
dG(p, q) denote the geodesic distance between any pair
p, q ∈ Q, that is defined as the length of the shortest
path between these two points in G. The graph G is
called a t-spanner for some t ≥ 1, if for any two points
p, q ∈ Q we have dG(p, q) ≤ t|pq|, where |pq| is the Eu-
clidiean distance between p and q. The parameter t is
refereed to as the stretch factor.

2.1 Well Separated Pair Decomposition (WSPD)

Let Q be a set of points in Rd. Two sets Pi, Qi ⊆ Q
of points are s-well separated if they can be enclosed
within balls of radius r such that the closest distance
between these balls is at least sr. An s-well sepa-
rated pair decomposition (s-WSPD) of size m for a
point set Q is a set of s-well-separated pairs of sub-
sets {(P1, Q1), . . . , (Pm, Qm)}, where each (Pi, Qi) ⊂
2Q×2Q, and for any pair of points p, q ∈ Q (p ̸= q) there
is a unique index i for which p ∈ Pi, q ∈ Qi. See Fig-
ure 2. Moreover, for any s-well separated pair (Pi, Qi),
for a sufficiently large separation parameter s, we have
approximately equal distances between any two points,
where one lies in Pi and the other lies in Qi. Further-
more, each pair Pi, Qi has two representatives pi ∈ Pi

and qi ∈ Qi, where pi, qi gives an approximation for
distances between any two points from Pi to Qi. It has
been shown that an s-WSPD of O(sdn) pairs can be
computed in O(n log n+ sdn) [3].

We start stating our results with a related question:
Given is a set D of imprecise points modeled by dis-
joint unit balls. The question is determining whether
there exists an spanner G for an arbitrary realization Q
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Figure 2: (a) Illustration of a point set and (b) a well-
separated pair decomposition of it with 4 pairs (com-
puted from the quadtree [14]).

of D such that for any other realization Q′ of D where
Q′ ̸= Q, the graph G remains an spanner forQ′ with the
same stretch factor. Abam et al. in [1] answered this
question positively by introducing a method for com-
puting the WSPD with respect to a separation ratio s′

on the center of the balls. They proved that the com-
puted WSPD remains valid for any realization Q of D,
where the separation ratio s of the WSPD on instances
is calculated according to s = s′−2

2 . Then they create a
spanner that is valid for any realization.

Let D be a set of n unit balls, and let s′ be the separa-
tion ratio, for which one make a WSPD on the centers.
The following result exist:

Lemma 1 (Lemma 1 [1]) Let D be a set of disjoint
unit balls, and let {(Pi, Qi)|1 ≤ i ≤ m} be a WSPD for
the set {c1, . . . , cn} as the centers of the balls in D, with
respect to s′ = 2s+ 2. Let Q = {p1, . . . , pn} be a set of
points, where pj ∈ Dj, for 1 ≤ j ≤ n. For 1 ≤ i ≤ m,
let P ′

i = {pj |cj ∈ Pi} and Q′
i = {pj |cj ∈ Qi}. Then

{(P ′
i , Q

′
i)|1 ≤ i ≤ m} is a WSPD for Q with respect to

s.

2.2 Point Set Diameter Approximation

A (1 + ϵ)-approximation algorithm already exists for
approximating the diameter of a point set in Rd us-
ing WSPD [7] (Chapter 3, Lemma 3.14). Let Q be a
set of n points in Rd. For a given 0 ≤ ϵ ≤ 1, the
objective is computing a pair pu, pv ∈ Q such that
diam(Q)

1+ϵ ≤ ∥pupv∥ ≤ diam(Q). In the following, we
recall the algorithm.

Algorithm: Approximating the Diameter [7].
We first compute an s-WSPD for a point set Q, where
s = 4/ϵ. For each WSPD pair (Pi, Qi), associate a pair
of points as representative points pu ∈ Pi, pv ∈ Qi and
compute the distance between them. See Figure 3. We
then remember the maximum distance among all rep-
resentative points and return it in the end. This would
give a (1 + ϵ)-approximation for the diameter of Q [7].
It is shown that the running time of this algorithm is
O(n log n + sdn) as the WSPD needs to be computed.
Although, the number of candidate pairs realizing the
diameter is only O(sdn).
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Figure 3: Diameter approximation using WSPD. The
points x, y determine the diameter, and pu, pv approxi-
mate the diameter within a factor 1 + ϵ.

Our method is in fact a combination of Abam et al. [1]
technique in the preprocessing phase for computing a
persistent WSPD which is computed on the disk cen-
ters, and the diameter approximation algorithm [7] in
the query phase, using the computed WSPD in the pre-
processing step.

3 Computing the Diameter after Preprocessing

Observe that for any set D of n imprecise points in R2,
there is no preprocessing with running time o(n log n)
on D to speed-up answering the diameter queries on D
to o(n log n) time. That is because all such problems
simulate the point set case, and it is known that there
is a lower bound Ω(n log n) for the diameter problem in
any algebraic decision tree [12]. In other words, if the
preprocessing takes o(n log n) time, this would result in
an o(n log n) time algorithm for the diameter of a set
of points in the plane. As another variant consider the
input regions as a set of parallel lines in the plane. If
the 2D points are sorted in just a single direction, one
cannot compute their diameter in less than Ω(n log n)
time [15]. Because, if D is a set of parallel lines, e.g.,
along the x-axis, we can only anticipate the x-order of
the points (received later), from which the lower bound
follows.
For a set of unit disks in R2, the diameter query prob-

lem can be solved in O(n) time after spending O(n log n)
time for preprocessing. Let D be a set of unit disks in
the plane. It is known that the Delaunay triangulation
of a realization of D, as the query set, can be computed
in O(n) time after spending O(n log n) time for prepro-
cessing. Hence, the convex hull can be extracted in O(n)
time. Having the convex hull, the diameter also can be
computed in O(n) time, as all the antipodal pairs of a
convex polygon can be computed in O(n) time and the
diameter is among them [16].
In Rd, we focus on approximation algorithms. An ob-

vious constant factor approximation algorithm for this
problem is the smallest enclosing ball (SEB) of a set
of points that approximates the diameter of the points

within a factor
√
3
3 . Consider the configuration at which

four points on the boundary of the SEB forms an equi-
lateral triangular-based pyramid, and the side length of
each triangular face determines the diameter. If one
translates any pair of these points on the boundary of
the SEB, to get closer, the diameter enlarges between

at least one pair. Hence, a (
√
3
3 + ϵ)-approximation of

the diameter of any set of points in Rd can be com-
puted in O(dnz/ϵO(1)) time by using the randomized
O(1+ ϵ)-approximation algorithm in [10] for computing
the SEB of a set of points in Rd, at which z is a pa-
rameter depending on the input 1. Next, we discuss a
(1 + ϵ)-approximation algorithm.

3.1 Preprocessing

In this section, our objective is to preprocess the re-
gions, such that when the exact position of points are
given, one can compute and return an approximation of
the diameter in o(n log n) time. To solve the problem,
in our algorithm we use the aforementioned technique
that returns a (1 + ϵ)-approximation of diameter us-
ing WSPD on the point set in O(n/ϵ2). However, we
need to compute the WSPD on the point set accord-
ing to a specific separation factor s = 4

ϵ , but it takes
O(n log n+ s2n) time and makes the algorithm useless.
Therefore, in the case where the input is a set of disks,
we use Abam et al. [1] technique for computing a WSPD
on the center points of the disks with the separation pa-
rameter s′ = 2s+ 2, which has been proved that would
be valid for any realization according to separation fac-
tor s. Hence, we do not need to compute the WSPD on
each instance, and the WSPD is computed only once in
the preprocessing phase.

Lemma 2 Let {(Ai, Bi)|1 ≤ i ≤ m} be a WSPD on
the set {c1, . . . , cn} of given disjoint unit disks with re-
spect to s′ = 8

ϵ + 2. Let Q = {p1, . . . , pn} be a set of
points, where pj ∈ Dj, for 1 ≤ j ≤ n. For 1 ≤ i ≤ m,
let A′

i = {pj |cj ∈ Ai} and B′
i = {pj |cj ∈ Bi}. Then

{(A′
i, B

′
i)|1 ≤ i ≤ m} is a WSPD for Q with respect to

s = 4
ϵ .

Proof. According to Lemma 1 the {(A′
i, B

′
i)|1 ≤ i ≤

m} would be a valid WSPD for any instance with re-

spect to separate factor s = s′−2
2 . We assumed the sep-

arate factor of the WSPD on the center points is s′ =
8
ϵ + 2, so we have: s = s′−2

2 =
( 8
ϵ+2)−2

2 =
8
ϵ

2 = 4
ϵ . □

3.2 Query Phase

Now, when we are given a realization of the balls, we
wish to compute a (1+ϵ)-approximation of the diameter
in O(n/ϵd) time. It follows from Lemma 2 that we can

1We note this is the best-known algorithm for computing the
SEB, that has a linear dependency on d.
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do this by having a WSPD on the center points with
respect to separation factor s = 4

ϵ . In addition, our
WSPD is valid for any other realization.

Theorem 3 For any given set D = {D1, . . . , Dn} of n
imprecise points modeled as the same size balls which
are pairwise disjoint, a (1+ ϵ)-approximation of the di-
ameter of a realization Q of D can be computed in O( n

ϵd
)

time, after O(n log n+ n
ϵd
) preprocessing time.

Proof. Let s = 4
ϵ and s′ = 2s + 2 = 8

ϵ + 2 and
Q = {p1, . . . , pn} be the set of precise points. Let
{(Ai, Bi)}i=1,...,m be an s′-WSPD for the center points,
of size m = O(s′2n), and let A′

i = {pj |cj ∈ Ai},
B′

i = {pj |cj ∈ Bi}. It follows from Lemma 1 that
{(A′

i, B
′
i)|1 ≤ i ≤ m} is a WSPD for Q with respect

to separation parameter s = 4
ϵ .

Then, we associate one point to each set as the repre-
sentative point, let pa ∈ A′

i and pb ∈ B′
i be the represen-

tative points of the sets A′
i and B′

i respectively. From
the presented approximation algorithm for the diameter
in [7], by calculating the distance between representa-
tive points of each pair and computing the maximum
distance among all, we have a (1 + ϵ)-approximation of
the diameter of any realization in O(s′dn) time. □

4 Discussion

The main open question is finding an algorithm for
the general version, as our approach cannot be ex-
tended to overlapping disks or disks of arbitrary size.
We note that since the WSPD gives the nearest neigh-
bour pairs in a set of points, our results give also an
O(1)-approximation algorithm for the nearest neigh-
bour query for a realization of D in high dimensions.
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