
ICCG 2022, Sharif UT, February 24, 2022

Online Square Packing With Rotation

Shahin Kamali∗ Pooya Nikbakht†

Abstract

In the square packing problem, the goal is to place a
multi-set of square items of different side lengths in (0, 1]
into a minimum number of square bins of uniform side
length 1. In the online setting, the multi-set of items
forms a sequence that is revealed in an online and se-
quential manner. When an item is revealed, an online
algorithm has to place it into a square bin without any
prior knowledge of the forthcoming items. All existing
results for the online square packing are restricted to the
case when square items are placed orthogonally to the
square bins. In this paper, we provide an algorithm with
an asymptotic competitive ratio of 2.306 when squares
are allowed to be rotated.

1 Introduction

An instance of the square packing problem is defined
with a multiset of squares-items of different sizes in the
range (0, 1]. The goal is to place these squares into a
minimum number of unit square bins in a way that two
squares-items placed in the same square bin do not in-
tersect. The problem is a generalization of the classical
bin packing problem into two dimensions. As such, we
sometimes refer to the squares-items simply as items
and square bins as bins. A square item can be recog-
nized by the length of its side, which we refer to as the
size of the square.
In the offline setting, all square items are given in ad-

vance, and the algorithm can process them as a whole
before placing any item into a bin. In particular, the
algorithm can sort squares in the decreasing order of
their sizes, and this comes in handy in many settings.
In the online setting, the multi-set of items forms a se-
quence that is revealed in an online and sequential man-
ner. Items are revealed one by one; when an item is re-
vealed, an online algorithm has to place it into a square
bin without any prior knowledge of forthcoming items.
The decisions of algorithms are irrevocable.
Square packing has many applications in practice.

One prominent application is cutting stuck where bins
represent stocks (e.g., wood boards) and items are re-
quests to squares of specific sizes. When requests arrive,

∗Department of Computer Science, University of Manitoba,
Winnipeg, Canada, shahin.kamali@umanitoba.ca

†Department of Computer Science, University of Manitoba,
Winnipeg, Canada, nikbakhp@myumanitoba.ca

an algorithm has to ‘cut’ the stock to provide the pieces
that match the requests. This cutting process is equiv-
alent to ‘placing’ items into bins. The goal of cutting
stock is to minimize the number of stocks which also
matches a square packing goal. We note that in many
practical applications, requests arrive in an online man-
ner and the stock should be cut without priory knowl-
edge about the future requests. It is needless to say
that the cutting process is irrevocable which gives an
inherently online nature to these applications of square
packing.

There has been a rich body of research around square
packing. To our knowledge, all existing results except
for our previous work on offline square packing [17], as-
sume that squares are not allowed to rotate, that is,
sides of square items should be parallel to the square
bins. While this assumption makes combinatorial anal-
ysis of the problem easier, might cause a higher cost. As
an example, consider an instance of the problem formed
by n items of size 0.36. If we do not allow rotation, any
bin can include at most 4 items, which results a total
cost of n/4 for any algorithm. Allowing rotation, how-
ever, 5 items fit in each bin and we can reduce the cost to
n/5 (see Figure 1). As a result, the number of required
bins is decreased by n/20 which is a notable saving in
practice (e.g., for cutting stock applications).

In this paper, we consider the online square packing
problem with rotation which is defined as follows.

Definition 1 In the online square packing with rota-
tion, the input is a multi-set of squares (items) with
sizes S = {x1, ..., xn} where 0 < xi ≤ 1. The goal is to
pack these squares into the minimum number of squares
of unit size (bins). In the offline setting, S is available
since the beginning. In the online setting, S is revealed
as a sequence σ = ⟨x1, x2, . . . , xn⟩ which is revealed in
an online manner. At time-step t, the value of xt is re-
vealed and an online algorithm has to place a square of

Figure 1: If all input items have length
√
2

2
√
2+1

≈ 0.35,

rotation allows packing 5 items per bin instead of 4.



5th Iranian Conference on Computational Geometry

size x (1 ≤ t ≤ n). The decisions of the algorithm are
irrevocable and are made without knowing the values of
xt′ for t′ > t.

The asymptotic competitive/approximation ratio is
the standard method for analyzing packing problems.
We say an algorithm Alg has a competitive ratio of c
if there exists a constant c0 such that, for all n and for
all input sequences σ of length n, we have Alg(σ) ≤
c ·Opt(σ)+ c0 where A(σ) and Opt(σ) denote the costs
of A and Opt for processing σ, respectively, and are both
arbitrarily large.

1.1 Related work

The 1-dimensional bin packing has been studied exten-
sively in both offline and online settings (see, e.g., [14,
13, 6, 7]). In the 1-dimensional setting, each item has
simply a size ∈ (0, 1], and each bin has a capacity of 1.
In the offline setting, the problem is NP-hard, and the
best existing result is an algorithm that opens at most
Opt(σ)+O(logOpt) bins for placing a sequence σ [16].
In the online setting, the best existing algorithm has a
competitive ratio of 1.578 [2]. Meanwhile, it is known
that no online algorithm has a competitive ratio better
than 1.54278 [3].

There are many ways to extend bin packing to higher
dimensions (see [5] for a survey). Orthogonal pack-
ing square items into square bins is perhaps the most
straightforward extension. In the offline setting, the
problem is known to be NP-hard [18]. Bansal et al. [4]
provided an APTAS for this problem (indeed, for the
more general d-dimensional cubes). In the online set-
ting, the best existing upper and lower bounds have
improved a few times [19, 10]. The best existing algo-
rithm has a competitive ratio of 2.0885 [8] while the best
existing lower bound is 1.6707 [15].

In a previous work [17], we studied offline square
packing when the rotation of items is allowed. We
showed that, while the problem remains NP-hard, it
admits an APTAS under a resource-augmentation set-
ting, where bins of the algorithm have size 1+α, for an
arbitrary small α > 0, while bins of Opt have size 1.
If resource augmentation is not allowed, the problem is
likely ∃R-hard [17, 1].

1.2 Contribution

We consider the online setting and provide an online
algorithm that achieves a competitive ratio of 2.306 for
the square packing problem. Our algorithm is based
on classifying squares based on their sizes and placing
squares of similar sizes tightly, possibly using rotations,
in the same bins. This approach is previously used to
introduce different families of Harmonic algorithms for
bin packing in both one dimension and higher dimen-
sions. The presence of rotations, however, make our

classification and analysis different from the previous
work.

2 Square-Rotate algorithm

In this section, we introduce our square packing algo-
rithm called Square-Rotate.

2.1 Item classification

Similar to the Harmonic family of algorithms, we clas-
sify squares by the size of their side lengths (which we
simply refer to as the size of the items).

Square-Rotate packs squares of each class sepa-
rately from other classes. In total, there are 13 classes
of squares (having more classes is possible but leads to
none to small improvement of the final result). Square
items with sizes in the range (0, 0.1752] are in class 13.
We refer to class 13 as the tiny class, and items that
belong to this class are referred to as tiny items. We
refer to items that belong to class i ∈ [1, 12] as regular
items. For each class i ∈ [1, 12], the range of items in
the class is specified as (xi, xi−1] (for convenience, we
define x0 = 1). The values of xi’s are defined in a way
that a certain number of items, denoted by Si, of class i
can fit in the same bin. The specific range of item sizes
for each class i ∈ [1, 12] and values of Si is derived from
the best-known or optimal results [12] on the congruent
square packing problem [11], which asks for the mini-
mum size c(j) of a square that can contain j unit-sized
squares. A scaling argument, where the container size
is fixed to be 1, gives values of u(j) when the goal is
to pack j identical squares of maximum size u(j) into a
unit square.

In Figure 2, it is specified how Si items of the largest
size in class i can fit into a square bin. Therefore, the
scaled best-known values of u(j) for 1 ≤ j ≤ 36 can
be derived from the figure. These scaled numbers give
the specific ranges that we used for classifying items as
follows: Items of class 1 have sizes in the range (1/2, 1],
and we have x1 = 1/2. Note that exactly S1 = 1 item of
class 1 can fit in the same bin. For i ∈ [2, 12], Si is the
number of items of size xi−1 that fit in the same bin. For
example, for i = 2, we have S2 = 4 because x1 = 1/2,
and 4 items of size 1/2 fit in the same bin. Moreover,
xi is defined as the largest value so that Si +1 items of
size xi cannot fit in the same bin. For example, we have
x2 = 0.3694 because according to Figure 2, S2 + 1 = 5
squares of size 0.3694 cannot fit in the same bin.

The respective range of items for each class, as well as
the values of Si, are presented in Table 1. For example,
a square belongs to class 1, 2, or 12 if its side size is
in the interval (0.5, 1], (0.3694, .5], or (0.1752, 0.1779],
respectively.



ICCG 2022, Sharif UT, February 24, 2022

(a)
Class 1: x ∈
(0.5000, 1.0000]

(b)
Class 2: x ∈
(0.3694, 0.5000]

(c)
Class 3: x ∈
(0.3333, 0.3694]

(d)
Class 4: x ∈
(0.2697, 0.3333]

(e)
Class 5: x ∈
(0.2579, 0.2697]

(f)
Class 6: x ∈
(0.2500, 0.2579]

(g)
Class 7: x ∈
(0.2139, 0.2500]

(h)
Class 8: x ∈
(0.2073, 0.2139]

(i)
Class 9: x ∈
(0.2047, 0.2073]

(j)
Class 10: x ∈
(0.2000, 0.2047]

(k)
Class 11: x ∈
(0.1779, 0.2000]

(l)
Class 12: x ∈
(0.1752, 0.1779]

Figure 2: Placement of regular square items of class i ∈ [1, 12] in their respective bin. It is possible to pack i square
items of class i into a single square bin [12].

Class Side length x Si Occupied Area Weight Density

1 (0.5000, 1.0000] 1 > 1(0.250)=0.250 1 < 4.000
2 (0.3694, 0.5000] 4 > 4(0.136)=0.544 1/4 < 1.838
3 (0.3333, 0.3694] 5 > 5(0.111)=0.555 1/5 < 1.801
4 (0.2697, 0.3333] 9 > 9(0.072)=0.648 1/9 < 1.543
5 (0.2579, 0.2697] 10 > 10(0.066)=0.660 1/10 < 1.515
6 (0.2500, 0.2579] 11 > 11(0.062)=0.682 1/11 < 1.466
7 (0.2139, 0.2500] 16 > 16(0.045)=0.720 1/16 < 1.388
8 (0.2073, 0.2139] 17 > 17(0.042)=0.714 1/17 < 1.400
9 (0.2047, 0.2073] 18 > 18(0.041)=0.738 1/18 < 1.355
10 (0.2000, 0.2047] 19 > 19(0.040)=0.760 1/19 < 1.315
11 (0.1779, 0.2000] 25 > 25(0.031)=0.775 1/20 < 1.290
12 (0.1752, 0.1779] 26 > 26(0.030)=0.780 1/26 < 1.282
13 (0, 0.1752] > 0.702 1.425x2 ≈ 1.425

Table 1: A summary of item classification and details
on item weights and densities, as used in the definition
and analysis of Square-Rotate.

2.2 Packing regular items

For each class i (1 ≤ i ≤ 12), the algorithm has at most
one active bin of type i. When a bin of type i is opened,
it is declared as the active bin of the class, and Si square
spots, each having a size equal to the largest square of
class i, are reserved in the bin. Upon the arrival of an
item of class i, it is placed in one of the Si spots of the
active bin. If all these spots are occupied by previous
items, a new bin of type i is opened. This ensures that
all bins of type i, except potentially the current active
bin, include Si items.

2.3 Packing tiny items

For the last class, i.e., tiny items, the algorithm uses
a different approach, proposed by Epstein and van
Stee [9]. Briefly, it maintains at most one active bin
for placing tiny items. When a bin is opened for these
items, the algorithm reserves four square spots of size

1/2, i.e., the four squares of class 2 in Figure 2b. These
square spots are used as bins for placing tiny items.
Then, the algorithm chooses one of the innermost sub-
bin squares that has enough space for the arrived item
and repeats the procedure for the selected sub-bin un-
til it cannot split any of the innermost sub-squares into
four new ones with enough space for the item. At this
step, the item is placed in one of those smallest sub-
bins. When the next item arrives, if there is a sub-bin
of the smallest possible size in which the item can fit,
the algorithm places the item in that spot. Otherwise,
the algorithm finds the smallest sub-bin that can fit the
item and repeats the previous procedure to split it into
the smaller sub-bins to reach an appropriate spot for
the item. If no sub-bin with enough empty space is
available in the bin, the algorithm closes the current
bin and opens a new empty active bin for the item and
applies the whole process from the beginning (see [9],
for details). Note that the algorithm does not rotate
any of the tiny items to pack them. Epstein and van
Stee proved the following result, which we will use in
our analysis later.

Lemma 1 [9] Consider the square packing problem
(without rotation) in which all items are of size at most
1/M for some integer M ≥ 2. There is an online al-
gorithm (as described above) that creates a packing in
which all bins, except possibly one, have an occupied
area of size at least (M2 − 1)/(M + 1)2.

2.4 Algorithm’s analysis

In this section, we prove a competitive ratio of at most
2.306 for our algorithm. We use a weighting function
argument. For each item of size x, we define a weight
w(x) for the item and prove that: (1) the total weight



5th Iranian Conference on Computational Geometry

of square items in each bin of the algorithm, except
potentially a constant number of them, is at least 1, and
(2) the total weight of items in each bin of an optimal
packing is at most 2.306. If w(σ) denote the total weight
of items in an input sequence σ, then (1) implies that
the number of bins opened by the algorithm is at most
w(σ) + c, for some constant value of c, and (2) implies
that the number of bins in an optimal packing is at least
w(σ)/2.306. Therefore, the (asymptotic) competitive
ratio of the algorithm would be at most 2.306.

Recall that all bins opened for squares of class i (1 ≤
i ≤ 12), except possibly the last active bin, include Si

squares. We define the weight of items of class i to
be 1/Si. This way, the total weight of items in bins
opened for all squares of classes 1 to 12, except possibly
12 of them (the last bin from each class), is exactly 1.
Therefore, (1) holds for bins opened for regular items.

We define the weight of a tiny square of size x as
x2/0.701(= 1.425x2). All tiny items are of size at most
0.1752. Therefore, by Lemma 1, the occupied area of all
bins opened for tiny items (except possibly one of them)
will be at least 0.701. This implies their total weight is
at least 0.701/0.701 = 1.

Table 1 gives a summary of the weights of items in
different classes. From the above argument, we conclude
the following lemma.

Lemma 2 The total weight of squares in each bin
opened by Square-Rotate, except possibly a constant
number of them, is at least 1.

The following lemma provides an upper bound for
the total weight of items in a bin of the optimal offline
algorithm (Opt). The proof works by case analysis and
can be found in the appendix.

Lemma 3 The total weight of items in every bin of
Opt is less than 2.306.

Provided with the above two lemmas, we can derive
the main result of this section.

Theorem 4 There is an online algorithm for the
square packing problem with rotation problem which
achieves a competitive ratio of at most 2.306.

Proof. For an input σ, let SR(σ) and OPT (σ) denote
the cost of Square-Rotate andOpt, respectively. Let
w(σ) denote the total weight of items of σ. Lemmas 2
implies that SR(σ) ≤ w(σ) + c, where c is a constant
independent of the length of σ. Meanwhile, Lemma 3
implies that Opt(σ) ≥ w(σ)/2.306. From these inequal-
ities, we conclude SR(σ) ≤ 2.306 OPT (σ) + c, which
proves an upper bound 2.306 for the competitive ratio
of Square-Rotate. □

References

[1] M. Abrahamsen, T. Miltzow, and N. Seiferth. Frame-
work for ∃r-completeness of two-dimensional packing
problems. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 1014–
1021. IEEE, 2020.

[2] J. Balogh, J. Békési, G. Dósa, L. Epstein, and A. Levin.
A new and improved algorithm for online bin packing.
In 26th Annual European Symposium on Algorithms
(ESA), volume 112 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 5:1–5:14. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

[3] J. Balogh, J. Békési, G. Dósa, L. Epstein, and A. Levin.
A new lower bound for classic online bin packing.
CoRR, abs/1807.05554, 2018.

[4] N. Bansal, J. R. Correa, C. Kenyon, and M. Sviridenko.
Bin packing in multiple dimensions: Inapproximabil-
ity results and approximation schemes. Mathematics of
Operations Research, 31(1):31–49, 2006.

[5] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali.
Approximation and online algorithms for multidimen-
sional bin packing: A survey. Computer Science Review,
24:63–79, 2017.

[6] E. G. Coffman, M. R. Garey, and D. S. Johnson. Ap-
proximation algorithms for bin packing: A survey. In
Approximation algorithms for NP-hard Problems. PWS
Publishing Co., 1997.

[7] E. G. Coffman Jr., J. Csirik, G. Galambos, S. Martello,
and D. Vigo. Bin packing approximation algorithms:
survey and classification. In P. M. Pardalos, D.-Z. Du,
and R. L. Graham, editors, Handbook of Combinatorial
Optimization, pages 455–531. Springer, 2013.

[8] L. Epstein and L. Mualem. Online bin packing of
squares and cubes. arXiv preprint arXiv:2105.08763,
2021.

[9] L. Epstein and R. van Stee. Optimal online bounded
space multidimensional packing. In Proceedings of the
fifteenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 214–223, 2004.

[10] L. Epstein and R. van Stee. Online square and cube
packing. Acta Informatica, 41(9):595–606, 2005.

[11] P. Erdős and R. L. Graham. On packing squares with
equal squares. Journal of Combinatorial Theory, Series
A, 19:119–123, 1975.

[12] E. Friedman. Packing unit squares in squares: A survey
and new results. The Electronic Journal of Combina-
torics, pages 1–24, 2000.

[13] G. Galambos and G. J. Woeginger. Online bin packing
- a restricted survey. ZOR, 42:25–45, 1995.

[14] M. R. Garey and D. S. Johnson. Approximation al-
gorithms for bin packing problems - a survey. In
G. Ausiello and M. Lucertini, editors, Analysis and
Design of Algorithms in Combinatorial Optimization,
pages 147–172. Springer, New York, 1981.



ICCG 2022, Sharif UT, February 24, 2022

[15] S. Heydrich and R. van Stee. Beating the harmonic
lower bound for online bin packing. In 43rd Interna-
tional Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2016). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2016.

[16] R. Hoberg and T. Rothvoss. A logarithmic additive
integrality gap for bin packing. In proc. the 28th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2616–2625. SIAM, 2017.

[17] S. Kamali and P. Nikbakht. Cutting stock with rota-
tion: Packing square items into square bins. In Interna-
tional Conference on Combinatorial Optimization and
Applications, pages 530–544. Springer, 2020.

[18] J. Y. T. Leung, T. W. Tam, C. S. Wong, G. H. Young,
and F. Y. L. Chin. Packing squares into a square. Jour-
nal of Parallel and Distributed Computing, 10(3):271–
275, 1990.

[19] S. S. Seiden and R. van Stee. New bounds for multidi-
mensional packing. Algorithmica, 36(3):261–293, 2003.

Appendix

Lemma 3 The total weight of items in every bin of Opt is
less than 2.306.

Proof. We first define the density of an item of size x as
the ratio between its weight and area, i.e., w(x)/x2. Given
the lower bound for the size of each square belonging to
class i (1 ≤ i ≤ 12), we can calculate a lower bound for the
density of each item in the class. For tiny items, the density
is simply 1.425x2/x2 = 1.425. Densities for all classes have
been reported in Table 1.

Defining densities comes handy in the following case anal-
ysis to prove that the total weight of items in any bin B of
an optimal packing is at most 2.306.

Case 1: First, assume there is no item of class 1 in B. Since
the density of items of other classes are less than 1.838, even
if B is fully packed with items of the largest density, the
total weight of items cannot be more than 1.838 which is
less than 2.306.

Case 2: In the second case, we assume there is one item
x of class 1 (note that no two items of class 1 fit in the
bin). Without loss of generality, we assume the size of x
is 1/2 + ϵ, where ϵ is a small real value greater than zero.
Clearly, a larger size for x does not increase the total weight
of other items in B because it would leave less space to
occupy more items in the bin (while the weight of x stays 1).
Next, we consider all possible cases in which we have some
items of class 2 and 3 together with x in B. As presented in
Table 2, there will be 14 sub-cases to analyze. To see how we
reach these 14 sub-cases, first note that it is not possible to
accommodate 4 or more items of class 2 in addition to x in
B (i.e., a total number of 5 or more items from these classes
1 and 2). This is because no five items with size larger than
0.3694 can fit in B [12]. A similar argument shows that we
cannot have 6 or more items from classes 1, 2, and 3 together
in a bin, otherwise we could accommodate 6 identical squares
of size strictly larger than 0.3333 which is a contradiction to

total weight area occupied remaining total weight in total weight of

C1 C2 C3 of items of by items of remaining Area remaining area items in the bin

class c ≤ 3 (W ) class c ≤ 3 (A) (Ar = 1− A) (Wr = Ar × 1.543) (W +Wr)

1 0 0 1.00 > 0.250 < 0.750 < 1.157 < 2.157
1 0 1 1.20 > 0.361 < 0.639 < 0.986 < 2.186
1 0 2 1.40 > 0.472 < 0.528 < 0.815 < 2.215
1 0 3 1.60 > 0.583 < 0.417 < 0.644 < 2.244
1 0 4 1.80 > 0.694 < 0.306 < 0.472 < 2.272
1 1 0 1.25 > 0.386 < 0.614 < 0.948 < 2.198
1 1 1 1.45 > 0.497 < 0.503 < 0.776 < 2.226
1 1 2 1.65 > 0.608 < 0.392 < 0.605 < 2.255
1 1 3 1.85 > 0.719 < 0.281 < 0.434 < 2.284
1 2 0 1.50 > 0.522 < 0.478 < 0.738 < 2.238
1 2 1 1.70 > 0.633 < 0.367 < 0.566 < 2.266
1 2 2 1.90 > 0.744 < 0.256 < 0.395 < 2.295
1 3 0 1.75 > 0.658 < 0.342 < 0.528 < 2.278
1 3 1 1.95 > 0.769 < 0.231 < 0.356 < 2.306

Table 2: Fourteen possible cases in which we have a
combination of items of class 2 (C2) and 3 (C3) together
with one item x of class 1 (C1) in a single bin B. Here,
“sum of weights (W )” and “sum of areas (A)” indicate,
respectively, the total weight and area of items of the
first three classes in B. “Remaining area” is the area
left in the bin that is used for packing items of class 4
or higher. “Weight of items in the remaining area” is
an upper bound for the total weight of items of class 4
or higher in B (these items have density no more than
1.543). Finally, “the total weight of items in the bin”
indicate the sum of weights of all items (from all classes)
in B.

the fact that no six items of size larger than 0.3333 can fit
in the same bin [12]. We can conclude that the 14 sub-cases
summarized in Table 2 cover all possibilities for items of the
first three classes in Case 2.

According to Table 1, the density of items belonging to
class i (4 ≤ i ≤ 12) as well as tiny items is at most 1.543
(which is the density of class-4 items). Using a similar ar-
gument made for Case 1, we suppose that, after placing a
certain number of items of class 2 and 3 beside x in B, in
each sub-case, we are able to completely fill the remaining
empty space of B with the items of the maximum density
1.543. This makes us able to calculate an upper bound for
the maximum total weight of items in B for each of the sub-
cases. The resulting bounds for each sub-case can be found
in the last column of Table 2, where the maximum upper
bound among all sub-cases is 2.306, which happens when we
have one item of class 1 in B together with 3 items of class
2 and one item of class 3.

As a result, in both Case 1 and Case 2, the total weight
of items in B cannot be more than 2.306. □


