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A Randomized Algorithm for Non-crossing Matching of Online Points
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Abstract

We study randomized algorithms for the online non-
crossing matching problem. Given a sequence of n on-
line points in general position, the goal is to create a
matching of maximum size so that the line segments
connecting pairs of matched points do not cross. In
previous work, Bose et al. [CCCG 2020] showed that a
simple greedy algorithm matches at least ⌈2n/3−1/3⌉ ≈
0.6̄n points, and it is the best that any deterministic
algorithm can achieve. In this paper, we show that ran-
domization helps to achieve a better competitive ratio,
that is, we present a randomized algorithm that matches
at least 235n/351− 202/351 ≈ 0.6695n points.

1 Introduction

In the geometric matching problems, the input is a set
of geometric objects, and the goal is to create a pair-
wise matching of these objects under different restric-
tions and objectives. In the bottleneck matching prob-
lem, for example, the goal is to create a perfect match-
ing of n points, assuming n is even, so as to minimize
the maximum length of the line segments that connect
matched pairs [8]. Using the same terminology as in
graph theory, we refer to the line segments that connect
pairs of matched vertices as the edges of the matching.
Other variants of the geometric matching problems ask
for perfect matchings that minimize the total length of
edges [4] or maximize the length of the shortest edge
[6]. Matching objects other than points are also studied
(see, e.g., [1, 2])

In the non-crossing matching problem, the input is a
set of points in general position, and the goal is to match
points in a way that the edges between the matched
pairs do not cross. In the offline setting, it is rather easy
to solve the problem: one can sort all points by their
x-coordinate and match pairs of consecutive points. All
points, except possibly the last one, will be matched.
The running time of this algorithm is O(n log n), which
is asymptotically optimal [5]. Other variants of non-
crossing matching have been studied in the offline set-
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ting (see [7]). For example, Aloupis et al. [1] considered
the computational complexity of finding non-crossing
matching of a set of points with a set of geometric ob-
jects that can be a line, a line segment, or a convex
polygon.

Bose et al. [3] studied the online variant of the non-
crossing matching. Under this setting, the input is a set
of n points in general position that appear in an online,
sequential manner. When a point x arrives, an online al-
gorithm can match it with an existing unmatched point
y, provided that the edge between them does not cross
previous edges in the matching. Alternatively, the al-
gorithm can leave the point unmatched to be matched
later. In taking these decisions, the algorithm has no
information about the forthcoming points or the length
of the input. The algorithm’s decisions are irrevocable
in the sense that once a pair of points is matched, that
pair cannot subsequently be removed from the match-
ing. The objective is to find a maximum matching.

Under a worst-case analysis, where an adversary gen-
erates the online sequence, it is not possible to match all
points. For example, consider an input that starts with
two points x and y. If an online algorithm leaves the
two points unmatched, then the adversary ends the se-
quence, and the matching is already sub-optimal. If the
algorithm matches x and y, then the adversary gener-
ates the next two points on the opposite sides of the line
between x and y, and the matching will be sub-optimal
for this input of length n = 4. Bose et al. [3] extended
this argument to show that in the worst case, no deter-
ministic algorithm can match more than ⌈2n/3 − 1/3⌉
points. Meanwhile, they showed that any greedy algo-
rithm matches at least ⌈2n/3 − 1/3⌉ points, and hence
is optimal. An algorithm has the greedy property if it
never leaves a point x unmatched if there is a suitable
unmatched point y that x can be matched to (that is,
the edge between x and y does not cross existing edges
in the matching).

1.1 Contribution

We study randomized algorithms for the non-crossing
matching problem. As in [3], we study worst-case sce-
narios, where the input is generated adversarially. We
assume the adversary is oblivious to the random choices
made by the algorithm, but it is aware of how the algo-
rithms works (that is, the code of the algorithm).

We present a randomized algorithm that matches at
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least ⌊235n/351− 202/351⌋ ≈ 0.6695n points on expec-
tation for any input of size n. This shows the advantage
of randomized algorithms over deterministic ones, which
match roughly 0.6̄n points in the worst case.

There are two main components in our randomized al-
gorithm. First, the algorithm maintains a convex parti-
tioning of the plane and matches two points only if they
appear in the same partition. This is followed by up-
dating the partitioning by extending the edge between
the matched pair. This partitioning enables us to use
a simple inductive argument to analyze the algorithm.
Second, the algorithm deviates from the greedy strat-
egy. In particular, the algorithm gives a chance for an
incoming point x to stay unmatched even if there are
one or two points in the same convex region that it can
match. As we will see, this will be essential for any
improvement over deterministic algorithms.

2 A Randomized Online Algorithm

We present and analyze a randomized online algorithm
for the non-crossing matching problem. In what follows,
for any a ̸= b we use Lab to denote the line passing
through a and b, and Sab to denote the line segment
between a and b.

2.1 Algorithm’s description

The algorithm maintains a partitioning of the plane into
convex regions and matches points only if they belong
to the same region. In the beginning, there is only one
region that is formed by the entire plane. After four
points appear inside a convex region, one or two pairs of
points are matched, and the convex region is partitioned
into two or three convex regions by extending the line
segments passing through the matched pairs.

Let x, y, z, and w be the first four points inside a
convex region C in the same order. In what follows, we
describe how these four points are treated.

• Upon the arrival of x, there is no decision to make,
given that there is no point inside C to be matched
with x.

• Upon the arrival of y, it is matched with x with
a probability of 1/2 and stays unmatched with a
probability of 1/2.

• Upon the arrival of z, if the pair (x, y) is already
matched, then there is no decision to make. Oth-
erwise, z is matched with x with a probability of
1/3, with y with a probability of 1/3, and stays
unmatched with a probability of 1/3.

• Upon the arrival of w, there are two possibilities to
consider:

– First, suppose a pair of points a, b ∈ {x, y, z}
is already matched, while a third point c ∈
{x, y, z}/{a, b} is unmatched. If it is possi-
ble to match w with c (that is, Swc does not
cross Sab), then w is matched with c; other-
wise, when Swc and Sab cross, there is no de-
cision to make.

– Second, suppose no pair of the first three
points are matched. Then w is matched with
a point a ∈ {x, y, z} so that the two points
b, c ∈ {x, y, z}/{a} appear on different sides
of the line Law (if there is more than one such
point, w is matched with z).

After the arrival of four points inside C, either all
points are matched into two pairs, in which case we
say a “double-pair is realized”, or only two points are
matched while the other two appear on different sides
of the matched pair, in which case we say a “single-pair
is realized”. If a single-pair is realized, in this case, C
is partitioned into two convex regions. If a double-pair
is realized, then algorithm extends the line segments
between the matched pairs until they hit the bound-
ary of C or the (non-extended) segment between the
other matched pair. This is followed by extending the
line segment between the second pair until it hits the
boundary of C or extended line that passes through the
first matched pair. When a double-pair is realized, C is
partitioned into three convex regions.

Assume n ≥ 8. A single-pair is “good” if, after the
appearance of all n points, both of the two regions re-
sulted from extending the line segment of the matching
contain at least 2 points, and it is “bad” otherwise. A
double-pair is said to be “good” if, after the appearance
of all n points, one of the three regions formed by ex-
tending the line segments of the two matchings is empty;
otherwise, it is “bad”. The presence of 2 or more than 2
points, or no points in a region provides a possibility of
matching all pairs; hence we assert that a single/double
pair is “good” or “bad” as specified above.

The following example illustrates the algorithm’s
steps. Consider an input formed by 10 points labeled
from p1 to p10 in the order of their appearance, as de-
picted in Figure 1. The convex regions maintained by
the algorithm are highlighted in different colors. Ini-
tially, the entire plane is a convex region C0, where point
p1 appears. Upon the arrival of p2, the algorithm match
it with p1 with a probability of 1/2. Suppose (p1, p2) are
matched. Then, there is no decision to be made for p3.
Upon the arrival of p4, the line segments Sp1p2

and Sp3p4

do not cross. Therefore, p4 is matched with p3. At this
point, four points have appeared in C0 and a double-
pair (p1, p2) and (p3, p4) has been realized. Therefore,
C0 is partitioned into three smaller convex regions C1,
C2, and C3 by extending Sp1,p2

and then Sp3,p4
(Fig-

ure 1a). Points p5 and p6 appear respectively in C3 and
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(a) The state of the algorithm after processing p1, . . . , p4.
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(b) The state of the algorithm after processing p1, . . . , p10.

Figure 1: One possible output of the algorithm when the
input is a sequence of 10 points labeled as p1, . . . , p10 in
the order of their appearance.

C2. Since these are the first points in their respective
regions, there is no decision to be made, and they stay
unmatched. Subsequently, p7 appears in C3 and the
algorithm matches with p5 with a probability of 1/2.
Suppose these two points are not matched. Upon the
arrival of p8 in C3, it is matched with p5 or p7, each
with a probability of 1/3, and is left unmatched with a
probability of 1/3. Suppose (p5, p8) are matched. Next,
point p9 appears in C2 and is matched with p6 with a
probability of 1/2, and stays unmatched with a prob-
ability of 1/2. Suppose (p6, p9) are matched. Finally,
point p10 appears on C3. Given that the Sp7p10 crosses
Sp5p8

, there is no decision to be made, and p10 stays
unmatched. At this point, four points have appeared in
C3, and a single-pair (p5, p8) has been realized. There-
fore, C3 is partitioned into two smaller convex regions
C4 and C5 by extending Sp5,p8 (Figure 1b).

2.2 Algorithm’s analysis

Let f(n) denote the expected number of unmatched
points left by the algorithm when input is formed by n
items. We use an inductive argument to find an upper
bound for f(n). First, we prove the following lemma.
The proof is based on case analysis, and can be found
in the appendix:

Lemma 1 (appendix) We have f(0) = 0, f(1) = 1,
f(2) = 1, f(3) = 4/3, f(4) ≤ 4/3, f(5) ≤ 5/3, f(6) ≤
20/9, and f(7) ≤ 52/18.

We use an inductive argument to prove f(n) ≤ cn +
d where c = 116/351 ≈ 0.3304 and d = 32c − 10 =
202/351 ≈ 0.5754. First, we apply Lemma 1 to establish
the base of induction in the following theorem.

Lemma 2 (appendix) For n ∈ [2, 7], it holds that
f(n) ≤ cn+ d where c = 116/351 and d = 202/351.

Lemma 3 For n ≥ 8, after serving the first four points
inside a convex region, at least one of the followings
hold:

• A good single-pair is realized with a probability of
at least 1/6

• A good double-pair is realized with a probability of
at least 1/6.

Proof. (sketch) We provide a sketch of the proof here.
The detailed proof can be found in the appendix. Let
x, y, z, and w denote the first four points in the same
order that they appear.

First, suppose the convex hull formed by the four
points is a triangle ∆. If w is inside ∆, then the pairs
(x, y) and (w, z) form a double-pair that is realized with
a probability of 1/2. If this is bad, then there should be
at least one future point on each side of the line passing
through (w, z), which means (w, z) is a good single-pair.
We note that the single-pair formed by (w, z) is realized
with a probability of 1/6. Next, suppose w is a vertex of
∆ and another point c ∈ {x, y, z} is inside ∆. Let a, b be
the other two points in {x, y, z}. Then, the pairs (a, b)
and (c, w) form a double-pair which is realized with a
probability of at least 1/6. If this double-pair is not
good, then (w, z) is a good single-pair which is realized
with a probability of 1/6.

Next, suppose the convex hull formed by the four
points is a quadrilateral and includes all of them as
its vertices. In this case, each of the two single-pairs
formed by the diagonals of the convex hull is realized
by a probability of at least 1/6. If both of these single-
pairs are bad, then all the remaining points in the in-
put sequence must appear in one of the quarter-planes
formed by extending these diagonals. Then, the double-
pair formed by the pair of points on the boundary of
the quarter-plane and the pair of points outside of the
quarter-plain form a good double-pair. The probability
of such a double-pair to be realized is at least 1/6. □

We are now ready to prove the main result.

Theorem 4 There is a randomized algorithm that, for
any input formed by n ≥ 2 points, leaves at most cn+ d
points unmatched, where c = 116/351 and d = 202/351.

Proof. We use an inductive argument to show that our
algorithm satisfies the conditions specified in the theo-
rem. For n ≤ 7, the claim holds by Lemma 1. Suppose
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n ≥ 8, and assume that for any m < n, it holds that
f(m) ≤ cm+ d.

First, we claim that the number of unmatched points
is at most cn + d + (2 − 6c) when a bad single-pair is
realized, or a bad double-pair is realized after the first
four points appear. If a bad single-pair is realized, then
either (I) there is one point on one side of the matched
pair and n − 3 > 2 points on the other side, or (II)
there is no point on one side of the matched pair and
n − 2 > 2 points on the other side. For (I), by the
induction hypothesis, the number of unmatched points
on the side with n− 3 points will be at most f(n− 3) ≤
cn−3c+d. Therefore, the number of unmatched points
is at most f(n−3)+1 ≤ cn−3c+d+1 < cn+d+(2−6c).
The last inequality holds because c < 1/3. For (II), the
number of unmatched points will be at most f(n−2) ≤
cn+d−2c < cn+d+(2−6c). If a double-pair is realized
which is not good, then one of the followings holds for
the three regions formed by extending the line segments
between the matched pairs:

i) One region contains n−6 points, and the other two
regions each contains one point. Note that n− 6 ≥
2 since n ≥ 8. By the induction hypothesis, the
number of unmatched points is at most 2 + f(n −
6) = cn+ d+ (2− 6c).

ii) One region contains m ≥ 2 points, another region
contains one point, and the third region contains
n −m − 5 ≥ 2 points. The number of unmatched
points is at most f(m) + f(n−m− 5) + 1 ≤ cn−
5c+2d+1 < cn+ d+(2− 6c). The last inequality
holds because c+ d < 1.

iii) One region contains m1 ≥ 2 points, one region con-
tains m2 ≥ 2 points, and the third region contains
m3 = n − m1 − m2 − 4 ≥ 2 points. The number
of unmatched points is at most f(m1) + f(m2) +
f(m3) ≤ cn− 4c+3d < cn+ d+ (2− 6c). The last
inequality holds because c+ d < 1.

In summary, if a bad single-pair or a bad double-pair
is realized, the number of unmatched points is at most
cn+ d+ (2− 6c), and the claim holds.
By Lemma 3, after the appearance of the first four

points, either a) a good pair or b) a good double-pair
can be realized with a probability of at least 1/6.

Suppose case a) holds, that is, a good single-pair is
realized with a probability of at least 1/6, which im-
plies a bad single-pair or double-pair is realized with a
probability of at most 5/6. In case the good single-
pair is realized, there will be m ≥ 2 points on one
side of the line segment connecting matched pair, and
n − m − 2 ≥ 2 points on the other side. There-
fore, the number of unmatched points will be at most
f(m)+f(n−m−2) ≤ cn+2d−2c = (cn+d)+(d−2c).
On expectation, the number of unmatched points will be

at most 1/6((cn+d)+(d−2c))+5/6(cn+d+(2−6c)) =
cn+ d+ 1/6(d− 32c+ 10) = cn+ d. The last equality
holds because d = 32c− 10.

Next, suppose case b) holds, that is, a good double-
pair is realized with a probability of at least 1/6, which
implies a bad single-pair or double-pair is realized with a
probability of at most 5/6. In case the good double-pair
is realized, by definition, at least one of the three con-
vex regions formed by extending the double-pair will be
empty. For the other two regions, we have the following
cases:

i) One region is empty, and the other contains n−4 ≥
2 points, in which case the number of unmatched
points becomes f(n− 4) ≤ cn+ d− 4c < cn+ d+
(1− 5c). The last inequality holds because c < 1.

ii) One region contains a single point, and the other
one contains n − 5 ≥ 2 points. The number of
unmatched points will be at most f(n − 5) + 1 ≤
cn+ d+ (1− 5c).

iii) Both regions include m ≥ 2 and n − m − 4 ≥ 2
points. In this case, the number of unmatched
points will be at most f(m) + f(n − m − 4) ≤
cn + d + (d − 4c) < cn + d + (1 − 5c). The last
inequality holds because c+ d < 1.

Therefore, as long as the good double-pair is realized,
the number of unmatched points will be at most cn +
d + (1 − 5c). On expectation, we can write f(n) ≤
1/6((cn + d) + (1 − 5c)) + 5/6((cn + d) + (2 − 6c)) =
cn + d + 1/6(11 − 35c) < cn + d. The last inequality
holds since c > 11/35. □
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Appendix

In order to prove Lemma 1, we first prove the following
lemma:

Lemma 5 After four points arrived in the convex region C,
with a probability of at least 1/3, a double-pair is realized,
and with a probability of at most 2/3, a single-pair is realized.

Proof. Let x, y, z, and w denote the four points in the same
order they appear. There are two cases to consider:

• Suppose Sxy crosses Swz. With a probability of 1/2, x
and y are not matched. After that, with a probability of
2/3, z is matched to x or y. Without loss of generality,
assume z is matched with x. Given that Sxy crosses
Swz, line segments Sxz and Syw will not cross, implying
that w is matched to y, and a double-pair is realized.
So, with a probability of at least 1/2 · 2/3 = 1/3, all
points are matched, and a double-pair is realized.

• Suppose Sxy does not cross Sxz. Then, (x, y) are
matched with a probability of 1/2, and after that, (w, z)
are matched, and a double-pair is realized.

□

Using Lemma 5, we can prove Lemma 1:

Lemma 1 We have f(0) = 0, f(1) = 1, f(2) = 1, f(3) =
4/3, f(4) ≤ 4/3, f(5) ≤ 5/3, f(6) ≤ 20/9, and f(7) ≤ 52/18.

Proof. Suppose n items appear in a convex region C. The
proof is trivial for n ≤ 2. In what follows, we prove the
lemma for other values of n.

• For n = 3, it is possible that all points stay unmatched,
which happens when the second point is not matched
with the first one (with a probability of 1/2), and then
the third point is not matched with any of the first
two points (with a probability of 1/3). Therefore, with
a probability of 1/6, all three points stay unmatched,
and one point stays unmatched with a probability of
5/6. We can write f(3) = 1/6 · 3 + 5/6 · 1 = 4/3.

• For n = 4, using Lemma 5, we can write f(4) ≤ 1/3 ·
0 + 2/3 · 2 = 4/3.

• For n = 5, after the first four points appeared, either a
single-pair or a double-pair is realized:

– Suppose a single-pair is realized. Then, C is parti-
tioned into two regions, one containing one point
and the other one containing two points. There-
fore, it is expected that f(1) + f(2) = 2 points
stay unmatched.

– Suppose a double-pair is realized. Then, the first
four points are matched, and only the fifth point
stays unmatched.

By Lemma 5, with a probability of at least 1/3, a
double-pair is realized, and with a probability of at
most 2/3, a single-pair is realized. Therefore, we can
write f(5) ≤ 1/3 · 1 + 2/3 · 2 = 5/3.

• For n = 6, after the first four points appeared, either a
single-pair or a double-pair is realized:

– Suppose a single-pair is realized. Then, C is par-
titioned into two regions. Either (i) the fifth or
the sixth points appear on the same region, in
which case one region will have one point, and
the other one will have three points, or (ii) the
fifth and the sixth points appear in different re-
gions, in which case each region contains two
points. Therefore, it is expected that at most
max{f(1) + f(3), f(2) + f(2)} = 7/3 points stay
unmatched.

– Suppose a double-pair is realized. Then, at most
2 points (the last two points) stay unmatched.

By Lemma 5, with a probability of at least 1/3, a
double-pair is realized, and with a probability of at
most 2/3, a single-pair is realized. Therefore, we can
write f(6) ≤ 1/3 · 2 + 2/3 · 7/3 = 20/9.

• For n = 7, after the first four points appeared, either a
single-pair or a double-pair is realized:

– Suppose a single-pair is realized. Then, C is par-
titioned into two regions. Either (i) the fifth, the
sixth, and the seventh points all appear in the
same region, in which case one region has one
point, and the other one has four points (Fig-
ure 2a), or (ii) one of these points appear in one
region, and the other two appear in the other re-
gion, in which case one region contains two points,
and the other region contains three points (Fig-
ure 2b). Therefore, it is expected that at most
max{f(1)+f(4), f(2)+f(3)} ≤ max{1+4/3, 1+
4/3} = 7/3 points stay unmatched.

– Suppose a double-pair is realized. Then, at
most three points stay unmatched, which happens
when any of the three regions formed by partition-
ing of the first four points includes a single point
(see Figure 2c).

Unlike other cases, here, the expected number of un-
matched points is larger when a double-pair is real-
ized, and hence we cannot use Lemma 5. Instead,
we note that the probability of a single-pair being re-
alized is at least 1/6 This is because a single-pair is
realized if either (i) the first two points are matched
with a probability of 1/2, and the other two points ap-
pear on opposite sides of the line passing through the
matched points, happening with a total probability of
1/2, (ii) the first two points are not matched with a
probability of 1/2, and the third point is matched to
either of the first points with a probability of 1/3, and
the fourth point appears on the side of the matched
line that the other unmatched point is not on, hap-
pening with a total probability of 1/6, or (iii) the
first three points stay unmatched with a probability of
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(a) The case where a single-pair is real-
ized, and the last three points appear in
different regions.

a

c
d

b

(b) The case where a single-pair is real-
ized, and the last three points appear in
different regions.

a

c

b
d

(c) The case where a double-pair is real-
ized, and the last three points appear in
different regions.

Figure 2: The cases used in the calculation of f(7);
a, b, c, d ∈ {x, y, z, w} where x, y, z, and w are the first
four points in the same order of their appearance.

1/2·1/3 = 1/6, and then the fourth point gets match to
the point that bisects the unmatched points, happening
with a total probability of 1/6. Therefore, we can write
f(7) ≤ 5/6 · 3 + 1/6 · 7/3 = 52/18 (see Figure 2).

□

Lemma 2 For n ∈ [2, 7], it holds that f(n) ≤ cn+ d where
c = 116/351 and d = 202/351.

Proof. The proof follows from Lemma 1. For n = 2, we
have f(2) = 1 < 2c + d (since 2c + d > 1.2362). For n = 3,
we have f(3) = 4/3 = 3c + d (since 3c + d > 1.5669). For
n = 4, we have f(4) ≤ 4/3 < 4c+ d (since 4c+ d > 1.8974).
For n = 5, we have f(5) ≤ 5/3 < 5c + d (since 5c + d >
2.2279). For n = 6, we have f(6) ≤ 20/9 < 6c + d (since
6c+ d > 2.5584). For n = 7, we have f(7) ≤ 52/18 = 7c+ d
(note that 7c+ d = 52/18). □

Next, we provide the detailed proof of Lemma 3:

Lemma 3 For n ≥ 8, after serving the first four points
inside a convex region, at least one of the followings hold:

• A good single-pair is realized with a probability of at
least 1/6

• A good double-pair is realized with a probability of at
least 1/6.

Proof. Let x, y, z, and w denote the first four points in the
same order that they appear.

First, suppose the convex hull formed by the four points
is a triangle ∆ which includes the fourth point inside it. We
consider the following two cases:

• Assume w is the point that is inside ∆. Then the pairs
(x, y) and (w, z) form a double-pair that is realized with
a probability of 1/2. This is because the pair (x, y) is
matched with a probability of 1/2, and then the pair
(w, z) is matched with a probability of 1. Meanwhile,
(w, z) is a single-pair which is realized with a probabil-
ity of 1/6. This is because, with a probability of 1/6,
the first three points stay unmatched, and then the al-
gorithm matches w to z with a probability of 1. Now,
if the double pair formed by the pairs (x, y) and (w, z)
is bad, then there should be at least one future point
on each side of the line passing through (w, z), which
means (w, z) is a good single-pair (see Figure 3a).

• Assume w is a vertex of ∆ and another point c ∈
{x, y, z} is inside ∆. Let a, b be the other two points
in {x, y, z}. Then, the pairs (a, b) and (c, w) form a
double-pair which is realized with a probability of at
least 1/6. This is because the pair (a, b) is matched with
a probability of at least 1/6 (the pair (a, b) is matched
with a probability of 1/2 if z /∈ {a, b}, and with a prob-
ability of 1/6 if z ∈ {a, b}), and then w is matched with
c with a probability of 1. Meanwhile, the pair (c, w) is
a single-pair which is realized with a probability of 1/6.
Similar to the previous case, if the double pair formed
by the pairs (a, b) and (c, w) is bad, then there should
be at least one future point on each side of (a, b), which
means (a, b) is a good single-pair (see Figure 3b).

Next, suppose the convex hull formed by the four points
is a quadrilateral and includes all of them. Consider the
two single-pairs formed by the diagonals of the convex hull.
Any of these pairs can be realized with a probability of at
least 1/6. Specifically, the diagonal involving w is realized
when no pair of points from {x, y, z} are matched, which
takes place with a probability of 1/6. The other diagonal
is either between x and y, which is realized with a proba-
bility of 1/2, or between z and a ∈ {x, y}, which is realized
with a probability of 1/6. Therefore, if any of the two diag-
onal forms a good single-pair, the statement of the lemma
holds, and we are done (see Figure 3c). If none of the two
diagonals is good, then all the remaining points in the input
sequence should appear in one of the quarter-planes formed
by extending these diagonals (see Figure 3d). Then, the
double-pair formed by the pair of points on the boundary
of the quarter-plane (points b and c in Figure 3d) and the
pair of points outside of the quarter-plain (points w and a in
Figure 3d) form a good double-pair. The probability of such
a double-pair to be realized is at least 1/6. This is because
one of the pairs in the double-pair involves two of the first
three points. If these points are (x, y), the double-pair is
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Figure 3: An illustration of the proof of Lemma 3. (a)
when w is inside the triangle ∆, either the single-pair
formed by (w, z) is a good single-pair, or the double-
pair formed by (x, y), (w, z) is a good double-pair. (b)
when c ∈ {x, y, z} is inside the triangle ∆, either the
double pair formed by (a, b), (w, c) is a good double-
pair, or the single-pair formed by (w, c) is a good single-
pair. (c) the case when at least one of the diagonals of
the convex hull formed by the four points (here (w, b))
forms a good single-pair (d) when none of the single-
pairs formed by the diagonals of the convex hull are
good, all remaining points appear in one of the quarter-
planes formed by extending these diagonals; therefore,
the pair of points on the boundary of the quarter-plane
(here (b, c)) and the pair of points outside the quarter-
planes (here (w, a)) form a good double-pair.

realized with a probability of 1/2; otherwise, it is realized
with a probability of 1/6. □


