Angle-Monotonicity of theta-graphs for points in convex position

Davood Bakhshesh*
Mohammad Farshi ${ }^{\dagger}$

Abstract

For a real number $0<\gamma<180^{\circ}$, a geometric path $P=\left(p_{1}, \ldots, p_{n}\right)$ is called angle-monotone with width γ from p_{1} to p_{n} if there exists a closed wedge of angle γ such that every directed edge $\overrightarrow{p_{i} p_{i+1}}$ of P lies inside the wedge whose apex is p_{i}. A geometric graph G is called angle-monotone with width γ if for any two vertices p and q in G, there exists an angle-monotone path with width γ from p to q. In this paper, we show that for any integer $k \geq 1$ and any $i \in\{2,3,4,5\}$, the thetagraph $\Theta_{4 k+i}$ on a set of points in convex position is angle-monotone with width $90^{\circ}+\frac{i \theta}{4}$, where $\theta=\frac{360^{\circ}}{4 k+i}$. Moreover, we present two sets of points in the plane, one in convex position and the other in non-convex position, to show that for every $0<\gamma<180^{\circ}$, the graph Θ_{4} is not angle-monotone with width γ.

1 Introduction

Let S be a set of points in the plane. For two points $p, q \in S$, the Euclidean distance between p and q is denoted by $|p q|$. A geometric graph $G=(S, E)$ is a weighted graph such that any edge (x, y) of G is a straight-line segment between x and y and the weight of (x, y) is $|x y|$. The length of a path $P=\left(p_{1}, p_{2}, \ldots, p_{r}\right)$ between p_{1} and p_{r} in G is denoted by $|P|$, and it is defined as $|P|=\sum_{i=1}^{r-1}\left|p_{i} p_{i+1}\right|$. For any two points $p, q \in S$, the stretch factor (or dilation) between p and q in a geometric graph G is the ratio of the length of a shortest path between p and q in G over $|p q|$. The stretch factor of a geometric graph G is the maximum stretch factor between all pairs of vertices of G.
Let $t>1$ be a real number. A geometric graph G is called a t-spanner if the stretch factor of G is at most t. In Computational Geometry, constructing the geometric graphs with low stretch factor, small number of edges (small size) and low weight is an important problem. We refer the reader to the book [9] to study t-spanners and their algorithms.
Let $\theta>0$ be a real number. In [6], Dehkordi et al., introduced θ-paths. Let W_{p}^{θ} be a 90° closed wedge delimited by the rays starting at p with the slopes $\theta-45^{\circ}$ and $\theta+45^{\circ}$. A path $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is called a θ-path if

[^0]for every integer i with $1 \leq i \leq n-1$, the vector $\overrightarrow{p_{i} p_{i+1}}$ lies in the wedge $W_{p_{i}}^{\theta}$. Using the concept of θ-paths, Bonichon et al. [3] introduced angle-monotone graphs. A geometric graph $G=(S, E)$ is called angle-monotone if for any two points $u, v \in S$, there is a real number $\theta>0$ such that G contains a θ-path between u and v. Bonichon et al. [3] generalized the concept of anglemonotone graphs to angle-monotone graphs with width γ. Let γ be a real number with $0<\gamma<180^{\circ}$. A geometric path $P=\left(p_{1}, \ldots, p_{n}\right)$ is called angle-monotone with width γ from p_{1} to p_{n} if for some closed wedge of angle γ, every vector $\overrightarrow{p_{i} p_{i+1}}$ lies in the wedge whose apex is p_{i} (see Figure 1).

Figure 1: An angle-monotone path between x and y with width $\gamma=145^{\circ}$.

A geometric graph G is called angle-monotone with width γ if for any vertex p of G, there is an anglemonotone path with width γ from p to all other vertices of G. It is remarkable that if a path is angle-monotone with width γ from x to y, then the path is also anglemonotone with width γ from y to x.

In [6], Dehkordi et al. show that any Gabriel triangulation is an angle-monotone graph with width 90°. In [8], Lubiw and Mondal show that for any set of points in the plane, there is an angle-monotone graph with width 90° with a subquadratic size. Furthermore, they showed that for any angle β with $0<\beta<45^{\circ}$, and for any set of points in the plane, there is an angle-monotone graph with width $\left(90^{\circ}+\beta\right)$ of size $O\left(\frac{n}{\beta}\right)$. Bakhshesh and Farshi [1] present a point set in the plane such that
its Delaunay triangulation is not angle-monotone with width less than 140°. Bakhshesh and Farshi [2] prove that the minimum value of an angle γ such that for any set of points in the plane there is a plane anglemonotone graph with width γ is equal to 120°.

One of the most popular graphs in computational geometry are theta-graphs which were introduced by Clarkson [5] and independently by Keil [7]. Informally, for every point set S in the plane and an integer $m \geq 2$, the theta-graph Θ_{m} is constructed by partitioning the plane into m cones at each point $p \in S$, and joining the closest point to p at each cone (in the next section, closest will be defined). Bonichon et al. [3] proved that for any set of points in the plane, half- Θ_{6}-graph, a plane subgraph of Θ_{6}, whose edges are obtained by selecting every other cone, i.e., alternate cones, is angle-monotone with width 120°. In [6], Dehkordi et al. prove that for every set of n points in the plane that are in convex position, there exists an angle-monotone graph (anglemonotone graph with width $\left.90^{\circ}\right)$ with $O(n \log n)$ edges. To the best of our knowledge, it is unknown if the thetagraphs except Θ_{6} are angle-monotone with a constant width.

In this paper, we show that for any set of points in convex position, and any integer $k \geq 1$ and any $i \in\{2,3,4,5\}$, the theta-graph $\Theta_{4 k+i}$ is angle-monotone with width $90^{\circ}+\frac{i \theta}{4}$, where $\theta=\frac{360^{\circ}}{4 k+i}$. Moreover, we present two sets of points in the plane, one in convex position and the other in non-convex position, to show that for every $0<\gamma<180^{\circ}$, the graph Θ_{4} is not anglemonotone with width γ.

2 Preliminaries

Let $m \geq 3$ be an integer, and let $\theta=\frac{2 \pi}{m}$ be a real number. For any integer i with $0 \leq i<m$ and a point p in the plane, let \mathcal{R}_{i}^{p} be the ray emanating from p making the angle $\theta \times i=2 \pi i / m$ with the positive x-axis (the angles are considered in counter-clockwise). Let C_{i}^{p} be the cone which is constructed by the rays \mathcal{R}_{i}^{p} and \mathcal{R}_{i+1}^{p}. Note that we assume that $\mathcal{R}_{m}^{p}=\mathcal{R}_{0}^{p}$. For a point r and a cone C_{i}^{p}, we say C_{i}^{p} contains r (or, $r \in C_{i}^{p}$) if r lies strictly between \mathcal{R}_{i}^{p} and \mathcal{R}_{i+1}^{p}, or lies on \mathcal{R}_{i+1}^{p}. If r lies on \mathcal{R}_{i}^{p}, then $r \notin C_{i}^{p}$. For a point set S, the theta-graph Θ_{m} is constructed as follows. For each point $p \in S$, we partition the plane into m cones $C_{0}^{p}, C_{1}^{p}, \ldots, C_{m-1}^{p}$ (see Figure 2). Then, for each cone C_{i}^{p} containing at least one point of S other than p, let $r_{i} \in C_{i}^{p}$ be a point such that $\left|p r_{i}^{\prime}\right|$ is minimum where r_{i}^{\prime} is the perpendicular projection of r_{i} onto the bisector of C_{i}^{p}. Then, we add the edge $\left(p, r_{i}\right)$ to the graph. We assume that a pair (a, b) is a directed edge. We call the point r the closest point to p in C_{i}^{p}. For a point $q \in C_{i}^{p}$, the canonical triangle $T_{p q}$ is the isosceles triangle which is constructed by the rays of C_{i}^{p} and the line through q perpendicular

Figure 2: Partition the plane into $m=18$ cones with apex at p.
to the bisector of C_{i}^{p}. For more details on theta-graphs, see [9].

Let S be a set of $n \geq 3$ points in the plane that are in convex position. In the following, when we use the notation G, we mean one of the graphs $\Theta_{4 k+2}, \Theta_{4 k+3}$, $\Theta_{4 k+4}$ and $\Theta_{4 k+5}$. Throughout the paper, we assume that p and q are two distinct points in S and suppose, without loss of generality, that $q \in C_{0}^{p}$. Let \mathcal{W}_{O} be the wedge with apex at the origin O that is the union of all cones C_{t}^{O} with $\left\lceil\frac{m-1}{4}\right\rceil \leq t \leq\left\lceil\frac{m-2}{2}\right\rceil$. Let \mathcal{W}_{O}^{\prime} be the reflection of \mathcal{W}_{O} with respect to the point O. Now, let \mathcal{U}_{O} be a wedge with apex at the origin O such that $\mathcal{U}_{O}=\mathcal{W}_{O}^{\prime} \cup C_{0}^{O}$ (see Figure 3).

Figure 3: The wedges \mathcal{W}_{O} and \mathcal{U}_{O} for the different values of m.

3 Angle-monotonicity of theta-graphs

In this section, we show that for any integer $k \geq 1$ and any $i \in\{2,3,4,5\}$, the theta-graph $\Theta_{4 k+i}$ is anglemonotone with width $90^{\circ}+\frac{i \theta}{4}$. To this end, we show that there is an angle-monotone path between p and q in G with width $90^{\circ}+\frac{i \theta}{4}$. Let $P=\left(p=v_{0}, v_{1}, \ldots, v_{l}\right)$ be the directed path in G such that $v_{i+1} \in C_{0}^{v_{i}}$ is the closest point to v_{i}, and v_{l} is the last vertex of the path P that lies in $T_{p q}$. Let \ddot{P} be the directed path which is obtained by reversing the direction of all edges of P. If $v_{l}=q$, then obviously P is an angle-monotone path from p to q with width θ. Then, we are done. Now, in what follows, we assume that $v_{l} \neq q$. Suppose, without loss of generality, that q is below $P \cup C_{0}^{v_{l}}$ (see Figure 4). Let $Q=\left(q=a_{0}, a_{1} \ldots, a_{g}=v_{l}\right)$ be the

Figure 4: The path P.
path constructed by the algorithm $\Theta-\operatorname{Walk}\left(q, v_{l}\right)$ (see Algorithm 1). The path Q is a path between q and v_{l} in G such that for any a_{i} there exists a cone $C_{j}^{a_{i}}$ such that $v_{l} \in C_{j}^{a_{i}}$ and $\left(a_{i}, a_{i+1}\right)$ is an edge of G.

```
Algorithm 1: \(\Theta-\operatorname{Walk}(a, b)(\) see [9])
    output: A path between \(a\) and \(b\) in theta-graphs
    \(a_{0}=a\);
    \(i:=0\);
    while \(a_{i} \neq b\) do
        \(s:=\) an integer such that \(b \in C_{s}^{a_{i}}\);
        \(a_{i+1}:=\) a point of \(C_{s}^{a_{i}} \cap S \backslash\left\{a_{i}\right\}\) such that
        \(\left(a_{i} \cdot a_{i+1}\right)\) is an edge of \(\Theta_{k}\);
        \(i:=i+1\);
    end
    return the path \(\left(a_{0}, a_{1}, \ldots, a_{i}\right)\);
```


3.1 The graphs $\Theta_{4 k+2}$ and $\Theta_{4 k+4}$

We first prove the following lemma.
Lemma 1 If $G=\Theta_{4 k+2}$, then every edge $\left(a_{i}, a_{i+1}\right)$ of the path Q lies in the wedge $\mathcal{W}_{a_{i}}$.

Proof. Let ℓ_{1} be the horizontal line passing through v_{l}, and ℓ_{2} be the line passing through v_{l} that forms an
angle θ with the positive x-axis. Let c_{1} and c_{2} be the intersection of ℓ_{1} and ℓ_{2} with the sides of the triangle $T_{p q}$ which are incident to p (see Figure 5). Based on

Figure 5: Illustrating the proof of Lemma 1.
the construction of the path P, the vertex v_{l-1} lies in the quadrilateral $p c_{1} v_{l} c_{2}$. Let j be an integer such that $q \in C_{j}^{v_{l}}$. Since we assume that q is below $P \cup C_{0}^{v_{l}}$, we have $3 k+2 \leq j \leq 4 k+1$. Since $q \in C_{j}^{v_{l}}$, we have $v_{l} \in C_{j-(2 k+1)}^{q}$. Consider the triangle $T_{q v_{l}}$. Let x and y be the two other vertices of $T_{q v_{l}}$ as depicted in Figure 5. Let $d_{1} \neq v_{l}$ be the intersection of ℓ_{1} and $T_{q v_{l}}$, and let $d_{2} \neq v_{l}$ be the intersection of ℓ_{2} and $T_{q v_{l}}$. It is notable that it is possible that the segment $x y$ completely lies on the line ℓ_{2}. In this case, we assume that $d_{2}=y$. Now, if any vertex u of the path Q lies in the triangle $\triangle v_{l} y d_{2}$, since v_{l-1} lies in the quadrilateral $p c_{1} v_{l} c_{2}$, the triangle $q u v_{l-1}$ contains the vertex v_{l} that contradicts the convexity of the points. Hence, no vertices of Q lie in the triangle $\triangle v_{l} y d_{2}$. By similar reasons, no vertices of Q lie in the triangle $\triangle q v_{l} p$. Since $C_{0}^{v_{l}} \cap T_{p q}$ does not contain any point of S, the path Q completely lies in the triangle $\triangle q d_{1} v_{l}$. Then, for any edge $\left(a_{i}, a_{i+1}\right)$ of Q, there is an integer t with $j-(2 k+1) \leq t \leq 2 k$ such that $a_{i+1} \in C_{t}^{a_{i}}$. Since $3 k+2 \leq j \leq 4 k+1$, clearly $\left(a_{i}, a_{i+1}\right)$ lies in the wedge $\mathcal{W}_{a_{i}}$.

Now, we have the following lemma.
Lemma 2 If $G=\Theta_{4 k+2}$, then every edge (x, y) of the path $P \cup \ddot{Q}$ lies in the wedge \mathcal{U}_{x}.

Proof. By Lemma 1, every edge (a, b) of Q lies in the wedge \mathcal{W}_{a}. Therefore, every edge (b, a) of \ddot{Q} lies in the wedge \mathcal{W}_{b}^{\prime}. On the other hand, every edge $\left(v_{i}, v_{i+1}\right)$ of P lies in the cone $C_{0}^{v_{i}}$. Since $\mathcal{U}_{O}=\mathcal{W}_{O}^{\prime} \cup C_{0}^{O}$, every edge (x, y) of the path $P \cup \ddot{Q}$ lies in the wedge \mathcal{U}_{x}.

Theorem 3 For any set S of points in the plane that are in convex position and for any integer $k \geq 1$, the graph $G=\Theta_{4 k+2}$ is angle-monotone with width $90^{\circ}+\frac{\theta}{2}$.

Proof. Consider the points p and q. By Lemma 2, every edge (x, y) of the path $P \cup \ddot{Q}$ lies in the wedge \mathcal{U}_{x}. Therefore, the path $P \cup \ddot{Q}$ is an angle-monotone path from p to q in G with width $k \theta+\theta$. Note that for $G=\Theta_{4 k+2}$, the angle of the wedge \mathcal{U}_{x} is $k \theta+\theta$. Since
$\theta=\frac{360^{\circ}}{4 k+2}$, we have $k \theta+\theta=90^{\circ}-\frac{\theta}{2}+\theta=90^{\circ}+\frac{\theta}{2}$. Hence, $P \cup \ddot{Q}$ is an angle-monotone path with width $90^{\circ}+\frac{\theta}{2}$. This completes the proof.

Similar to the proof of Theorem 3, for $G=\Theta_{4 k+4}$ with $k \geq 1$, we can prove that the path $P \cup \ddot{Q}$ is an anglemonotone path from p to q with width $(k+1) \theta+\theta=$ $90^{\circ}+\theta$. Note that for $G=\Theta_{4 k+4}$, the angle of the wedge \mathcal{U}_{x} is $(k+1) \theta+\theta$. Hence, we have the following theorem.

Theorem 4 For any set S of points in the plane that are in convex position and for any integer $k \geq 1$, the graph $G=\Theta_{4 k+4}$ is angle-monotone with width $90^{\circ}+\theta$.

In [3], Bonichon et al., show that any angle-monotone graph with width $\gamma<180^{\circ}$ is a t-spanner with $t=$ $1 / \cos \frac{\gamma}{2}$. Hence, we have the following result.

Corollary 1 For any set of points in the plane that are in convex position and for any integer $k \geq 1$, the graphs $\Theta_{4 k+2}$ and $\Theta_{4 k+4}$ have the stretch factor at most $1 / \cos \left(\frac{\pi}{4}+\frac{\theta}{4}\right)$ and $1 / \cos \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$, respectively.

3.2 The graphs $\Theta_{4 k+3}$ and $\Theta_{4 k+5}$

We first assume that $G=\Theta_{4 k+3}$. Here, we present an algorithm that finds an angle-monotone path \mathcal{P} between p and q in G with a constant width. The algorithm is as follows. It first finds the path $P=\left(p=v_{0}, \ldots, v_{l}\right)$ which was introduced earlier. If $v_{l}=q$, then clearly $\mathcal{P}=P$ is an angle-monotone path with width θ, and we are done. Now, in the following we assume that $v_{l} \neq q$. Let a be the topmost vertex of the triangle $T_{p q}$ and let $b \neq p$ be the other vertex of $T_{p q}$. Let m be the midpoint of $a b$. The algorithm considers the following cases.

- Case 1: q lies on the segment $a m$. Now, let $Q=\left(q=a_{0}, \ldots, v_{l}\right)$ be the path constructed by the algorithm $\Theta-\operatorname{WALK}\left(q, v_{l}\right)$. Then, the algorithm outputs the path $\mathcal{P}=P \cup \ddot{Q}$.
- Case 2: q lies on the segment $b m$. Let $P^{\prime}=(q=$ u_{0}, \ldots, u_{s}) be the path in G such that $u_{i+1} \in C_{2 k+1}^{u_{i}}$ and u_{i+1} is the closest point to u_{i}, and u_{s} is the last vertex of the path P^{\prime} that lies in $T_{q p}$. Let b^{\prime} be the topmost vertex of the triangle $T_{q p}$ and let a^{\prime} be the bottommost vertex of $T_{q p}$. Let m^{\prime} be the midpoint of $a^{\prime} b^{\prime}$. Since $q \in C_{0}^{p}$, it is easy to see that p lies on the segment $a^{\prime} m^{\prime}$. Now, there are two cases:
- (I): P and P^{\prime} have a common vertex w. The algorithm outputs the path R which is formed by the portion of P from v_{0} to w followed by the portion of P^{\prime} from w to q.
- (II): P and P^{\prime} do not have any common vertex. Now, consider two following cases: (a):
there is a vertex $g \neq q$ of the path P^{\prime} below the path P. (b): all vertices of P^{\prime} are above the path P. For the case (a), let u_{h} be the last vertex of P^{\prime} below the path P and let Q^{\prime} be the constructed path by the algorithm $\Theta-\operatorname{WaLk}\left(p, u_{h}\right)$. Then, the algorithm outputs path $\mathcal{P}=P^{\prime} \cup \ddot{Q}^{\prime}$. For the case (b), first the path $Q=\Theta-\operatorname{Walk}\left(q, v_{l}\right)$ is constructed. Then, the algorithm outputs the path $\mathcal{P}=P \cup \ddot{Q}$.

For more details, see Algorithm 2.

```
Algorithm 2: Angle-Monotone-Path-
\(\Theta_{4 k+3}(p, q)\)
    output: An angle-monotone path between \(p\) and \(q\) in \(\Theta_{4 k+3}\)
    \(\mathcal{P}:=\emptyset ;\)
    Compute the path \(P=\left(p=v_{0}, \ldots, v_{l}\right)\);
    if \(v_{l} \neq q\) then
        if \(q\) lies on the segment " \(a m\) " then
            \(Q:=\Theta-\operatorname{WaLK}\left(q, v_{l}\right) ;\)
            \(\mathcal{P}:=P \cup \ddot{Q} ;\)
        end
        else
            Compute the path \(P^{\prime}=\left(q=u_{0}, \ldots, u_{s}\right)\);
            if \(P\) and \(P^{\prime}\) have a common vertex \(w\) then
                \(R:=\) the path which is formed by the portion of \(P\)
                from \(v_{0}\) to \(w\) followed by the portion of \(P^{\prime}\) from \(w\)
                to \(q\);
                \(\mathcal{P}:=R ;\)
            end
            else
                        if there is a vertex \(g \neq q\) of the path \(P^{\prime}\) below
                        the path \(P\) then
                        \(u_{h}:=\) the last vertex of \(P^{\prime}\) below \(P\);
                        \(Q^{\prime}:=\Theta-\operatorname{Walk}\left(p, u_{h}\right)\);
                        \(\mathcal{P}:=P^{\prime} \cup \ddot{Q}^{\prime} ;\)
                        end
                        else
                        \(Q:=\Theta-\operatorname{Walk}\left(q, v_{l}\right) ;\)
                        \(\mathcal{P}=P \cup \ddot{Q} ;\)
                end
            end
            end
    end
    else
        \(\mathcal{P}:=P ;\)
    end
    return \(\mathcal{P}\);
```

In the following, we show that the path \mathcal{P} returned by Algorithm 2 is an angle-monotone path between p and q with width $90^{\circ}+\frac{3 \theta}{4}$. We first prove the following lemma.

Lemma 5 If q lies on the segment am, then every edge $\left(a_{i}, a_{i+1}\right)$ of the path $Q=\left(q=a_{0}, \ldots, v_{l}\right)$ lies in the wedge $\mathcal{W}_{a_{i}}$.

Proof. Let j be an integer such that $v_{l} \in C_{j}^{q}$. Since we assumed that q is below $P \cup C_{0}^{v_{l}}$, we have $k+1 \leq j \leq$ $2 k+1$. Consider the triangle $T_{q v_{l}}$. Let x and y be the two other vertices of $T_{q v_{l}}$ as depicted in Figure 6(a). It is notable that the line passing through p and m is parallel to the line passing through q and y. Then, since q lies on the segment $a m$, the point p is below the line passing
through q and y. Hence, because of the convexity of the points, no points of Q lie in the triangle $\triangle q v_{l} y$. Consider the lines ℓ_{1} and ℓ_{2}, and the points d_{1} and d_{2}

(a) Illustrating the proof of Lemma 5.

(b) Illustrating the proof of Lemma 8.

Figure 6: Illustrating the proofs of Lemma 5 and Lemma 8.
as defined in the proof of Lemma 1. By the reasons similar to the proof of Lemma 1, we can prove that the path Q completely lies in the triangle $\triangle q d_{1} v_{l}$. Then, for any edge $\left(a_{i}, a_{i+1}\right)$ of Q, there is an integer t with $j \leq t \leq 2 k+1$ such that $a_{i+1} \in C_{t}^{a_{i}}$. Clearly, this shows that $\left(a_{i}, a_{i+1}\right)$ lies in the wedge $\mathcal{W}_{a_{i}}$.

Now, we prove the following lemma.
Lemma 6 If q lies on the segment bm, then every edge $\left(r_{i}, r_{i+1}\right)$ of the path R lies in the wedge $\mathcal{U}_{r_{i}}$.
Proof. According to Algorithm 2, the path R is constructed when the paths $P=\left(v_{1}, \ldots, v_{l}\right)$ and $P^{\prime}=$ $\left(u_{1}, \ldots, u_{s}\right)$ have a common vertex. It is clear that for every edge $\left(v_{i}, v_{i+1}\right)$ of the path P, we have $v_{i+1} \in C_{0}^{v_{i}}$, therefore $\left(v_{i}, v_{i+1}\right)$ lies in the wedge $\mathcal{U}_{v_{i}}$. On the other hand, for every edge $\left(u_{i}, u_{i+1}\right)$ of P^{\prime}, we have $u_{i+1} \in$ $C_{2 k+1}^{u_{i}}$. Therefore, $u_{i} \in C_{4 k+2}^{u_{i+1}}$ or $u_{i} \in C_{0}^{u_{i+1}}$. Hence, the edge $\left(u_{i+1}, u_{i}\right)$ lies in the wedge $\mathcal{U}_{u_{i+1}}$. This completes the proof.

Let \mathcal{Y}_{O} be a wedge with $\mathcal{Y}_{O}=\left(\bigcup_{i=3 k+2}^{4 k+2} C_{i}^{O}\right) \cup\left(C_{2 k+1}^{O}\right)^{\prime}$ $\left(\left(C_{2 k+1}^{O}\right)^{\prime}\right.$ is the reflection of $C_{2 k+1}^{O}$ with respect to the origin $O)$. It is clear that the angle of \mathcal{Y}_{O} is equal to $(k+1) \theta+\theta / 2$. Now, we prove the following lemma.

Lemma 7 If q lies on the segment bm and the paths P and P^{\prime} do not have any common vertex, and there is a vertex $g \neq q$ of the path P^{\prime} below the path P, then every edge $\left(c_{i}, c_{i+1}\right)$ of the constructed path \mathcal{P} by Algorithm 2 lies in the wedge $\mathcal{Y}_{c_{i}}$.

Proof. Le u_{h} be the last vertex of P^{\prime} below P. According Algorithm 2, $\mathcal{P}=P^{\prime} \cup \ddot{Q}^{\prime}$ that Q^{\prime} is the constructed path by $\Theta-\operatorname{Walk}\left(p, u_{h}\right)$. It is clear that for every edge $\left(u_{i}, u_{i+1}\right)$ of P^{\prime}, we have $u_{i+1} \in C_{2 k+1}^{u_{i}}$, and therefore $u_{i} \in\left(C_{2 k+1}^{u_{i+1}}\right)^{\prime}$. Hence, $\left(u_{i+1}, u_{i}\right)$ lies in the wedge $\mathcal{Y}_{u_{i+1}}$. Let $Q^{\prime}=\left(p=a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{z}^{\prime}=u_{h}\right)$. We claim that every edge $\left(a_{i}^{\prime}, a_{i+1}^{\prime}\right)$ lies in the wedge $\mathcal{Y}_{a_{i}^{\prime}}$. Since p lies on the segment $a^{\prime} m^{\prime}$, by the arguments similar to the proof of Lemma 5 , the claim is proved. These show that if $\left(c_{i}, c_{i+1}\right)$ be an edge of the path \mathcal{P}, it lies in the wedge $\mathcal{Y}_{c_{i}}$.

Now, we have the following lemma.
Lemma 8 If q lies on the segment bm and the paths P and P^{\prime} do not have any common vertex, and there is no vertex $g \neq q$ of the path P^{\prime} below the path P, then every edge $\left(r_{i}, r_{i+1}\right)$ of the constructed path \mathcal{P} by Algorithm 2 lies in the wedge $\mathcal{U}_{r_{i}}$.

Proof. Let u_{j} be a vertex of P^{\prime} above the path P. Let v_{i} be the last vertex of P to the left of u_{j} (see Figure $6(\mathrm{~b})$). Since p is to the left of u_{j}, the vertex v_{i} always exist. Since there is no vertex $g \neq q$ of the path P^{\prime} below the path P, we have $u_{j-1}=q$. Now, consider the triangle $T_{v_{i} v_{i+1}}$. Since P and P^{\prime} have no common vertex, clearly $u_{j} \notin T_{v_{i} v_{i+1}}$. Hence, if $v_{i} \neq p$, then the triangle $\triangle p u_{j} v_{i+1}$ contains the vertex v_{i} which contradicts the convexity of the points. Then, $v_{i}=p$. On the other hand, since $v_{l} \neq q$, we must have $v_{i+1} \notin$ $T_{q u_{j}}$, and therefore $v_{l} \in C_{t}^{q}$ with $k+1 \leq t<2 k+1$. Now, by the arguments similar to the proof of Lemma 5 , we can prove that every edge $\left(a_{i}, a_{i+1}\right)$ of the path Q lies in the wedge $\mathcal{W}_{a_{i}}$. Hence, it is clear that every edge $\left(r_{i}, r_{i+1}\right)$ of the path $\mathcal{P}=P \cup \ddot{Q}$ lies in the wedge $\mathcal{U}_{r_{i}}$.

Based on Lemmas 5, 6, 7 and 8, any path constructed by Algorithm 2 is angle-monotone with width $(k+1) \theta+\frac{\theta}{2}$. Since $\theta=\frac{360^{\circ}}{4 k+3}$, we have $(k+1) \theta+\frac{\theta}{2}=90^{\circ}+\frac{3 \theta}{4}$. Then, the following theorem holds.

Theorem 9 For any set S of points in the plane that are in convex position and for any integer $k \geq 1, \Theta_{4 k+3}$ is angle-monotone with width $90^{\circ}+\frac{3 \theta}{4}$.

By the arguments similar to the proof of Theorem 9, for $G=\Theta_{4 k+5}$ with $k \geq 1$, we can prove that the path \mathcal{P} is an angle-monotone path from p to q with width $(k+1) \theta+\frac{\theta}{2}$. Since $\theta=\frac{360^{\circ}}{4 k+1}$, we have $(k+1) \theta+\frac{\theta}{2}=$ $90^{\circ}+\frac{5 \theta}{4}$. Then, the following theorem holds.

Theorem 10 For any set S of points in the plane that are in convex position and for any integer $k \geq 1, \Theta_{4 k+5}$ is angle-monotone with width $90^{\circ}+\frac{5 \theta}{4}$.

We close this section with the following result.

Corollary 2 For any set of points in the plane that are in convex position, the graphs $\Theta_{4 k+3}$ and $\Theta_{4 k+5}$ with $k \geq 1$ have the stretch factor at most $1 / \cos \left(\frac{\pi}{4}+\frac{3 \theta}{8}\right)$ and $1 / \cos \left(\frac{\pi}{4}+\frac{5 \theta}{8}\right)$, respectively.

4 Theta-graph Θ_{4}

In the following, we present two point sets, one in convex position and the other in non-convex position, to show that the graph Θ_{4} of the point set is not angle-monotone for any width $\gamma>0$. Let p_{0}, p_{2}, p_{3} and p_{5} be the vertices of a rectangle with length 2 and width $1+\epsilon$, where $\epsilon>0$ is a small real number (see Figure 7(a)). Let p_{1} and p_{4} be the midpoints of the segments $p_{0} p_{2}$ and $p_{3} p_{5}$, respectively. Now, let $P=\left\{p_{0}, p_{1}, \ldots, p_{5}\right\}$.

Figure 7: The point sets P and V.
Consider the theta-graph Θ_{4} on P. It is not hard to see that the edge set E of Θ_{4} is
$E=\left\{\left(p_{0}, p_{1}\right),\left(p_{1}, p_{2}\right),\left(p_{2}, p_{3}\right),\left(p_{3}, p_{4}\right),\left(p_{4}, p_{5}\right),\left(p_{5}, p_{0}\right)\right\}$.
Now, since $p_{0} p_{2}$ and $p_{3} p_{5}$ are parallel, it is obvious that for any $0<\gamma<180^{\circ}$, any path between p_{1} and p_{4} is not angle-monotone with width γ.

Let $P^{\prime}=\left\{p_{0}^{\prime}, p_{1}^{\prime}, \ldots, p_{5}^{\prime}\right\}$ be a copy of point set P such that the points of P^{\prime} placed below the points of P as depicted in Figure $7(\mathrm{~b})$. Let $V=P \cup P^{\prime}$. It is easy to see that the edge set F of the theta-graph Θ_{4} on the point set V is
$F=E \cup\left\{\left(p_{0}^{\prime}, p_{1}^{\prime}\right),\left(p_{1}^{\prime}, p_{2}^{\prime}\right),\left(p_{2}^{\prime}, p_{3}^{\prime}\right),\left(p_{3}^{\prime}, p_{4}^{\prime}\right),\left(p_{4}^{\prime}, p_{5}^{\prime}\right),\left(p_{5}^{\prime}, p_{0}^{\prime}\right)\right\}$ $\cup\left\{\left(p_{0}^{\prime}, p_{5}\right),\left(p_{1}^{\prime}, p_{4}\right),\left(p_{2}^{\prime}, p_{3}\right)\right\}$.

It is obvious that for any $0<\gamma<180^{\circ}$, any path between p_{1} and p_{4} is not angle-monotone with width γ. Now, we have the following theorem.

Theorem 11 For any angle $0<\gamma<180^{\circ}$, the graph Θ_{4} is not necessarily angle-monotone with width γ.

5 Remarks

In Corollaries 1 and 2 , we examined the stretch factor of the graphs $\Theta_{4 k+2}, \Theta_{4 k+3}, \Theta_{4 k+4}$ and $\Theta_{4 k+5}$ when the points placed in convex position. In [4], Bose et al., show that the stretch factor of the graphs $\Theta_{4 k+2}, \Theta_{4 k+3}, \Theta_{4 k+4}$ and $\Theta_{4 k+5}$ are at most $1+2 \sin (\theta / 2), \quad \cos (\theta / 4) /(\cos (\theta / 2)-\sin (3 \theta / 4))$, $1+2 \sin (\theta / 2) /(\cos (\theta / 2)-\sin (\theta / 2)) \quad$ and $\cos (\theta / 4) /(\cos (\theta / 2)-\sin (3 \theta / 4))$, respectively.

By comparing the results of Corollaries 1 and 2 with the results in [4], we find that the results of the corollaries do not improve the stretch factors known in [4].

In the following, we indicate whether

Figure 8: The lower bound for the width of $\Theta_{4 k+2}$. the bounds on the width presented in Theorems 3, 4, 9 and 10 are tight or not. Consider the graph $\Theta_{4 k+2}$. Figure 8 shows that the upper bound on the width presented in Theorems 3 is tight. We place a vertex c close to the lower corner of $T_{a b}$ that is sufficiently far from the vertex b. We also place a vertex d close to the upper corner of $T_{b a}$ that is sufficiently far from the vertex a. Now, the graph $\Theta_{4 k+2}$ of four points a, b, c and d is as shown in Figure 8. We can easily see that each of the paths $a c b$ and $a d b$ are angle-monotone with width $90^{\circ}+\frac{\theta}{2}-\epsilon$, for some real number $\epsilon>0$ that only depends on the distance between $c(d)$ and the lower corner (upper corner) of $T_{a b}$ $\left(T_{b a}\right)$. If ϵ approaches zero, then the width approaches $90^{\circ}+\frac{\theta}{2}$.

For Theorems 4, 9 and 10, we do not know whether the bounds for the width is tight or not.

6 Conclusion

In this paper, we showed that for any set of points in the plane that are in convex position and for any integer $k \geq 1$ and any $i \in\{2,3,4,5\}$, the theta-graph $\Theta_{4 k+i}$ is angle-monotone with width $90^{\circ}+\frac{i \theta}{4}$, where $\theta=\frac{360^{\circ}}{4 k+i}$. Moreover, we presented two sets of points in the plane, one in convex position and the other in non-convex position, to show that for every $0<\gamma<180^{\circ}$, the graph Θ_{4} is not angle-monotone with width γ. It is notable that our technique in Section 3.2, does not work for Θ_{5} because by the proposed technique, the resulting path \mathcal{P} is angle-monotone with width $90^{\circ}+\frac{5 \theta}{4}$. Since for Θ_{5}, we have $\theta=\frac{2 \pi}{5} \equiv 72^{\circ}$. Then, $90^{\circ}+\frac{5 \theta}{4}=180^{\circ}$. We conjecture for any set of points in convex position, Θ_{5} is angle-monotone with a constant width. We tried to
prove our conjecture but we did not succeed. Finally, we present the following conjecture.

Conjecture 1 For any set of points in the plane that are not convex position, for any integer $k \geq 1$ and any $i \in\{2,3,4,5\}$, the theta-graph $\Theta_{4 k+i}$ is angle-monotone with width $90^{\circ}+\frac{i \theta}{4}$, where $\theta=\frac{360^{\circ}}{4 k+i}$.

References

[1] D. Bakhshesh and M. Farshi. Angle-monotonicity of Delaunay triangulation. Computational Geometry, 94:101711, 2021.
[2] D. Bakhshesh and M. Farshi. On the plane angle-monotone graphs. Computational Geometry, 100:101818, 2022.
[3] N. Bonichon, P. Bose, P. Carmi, I. Kostitsyna, A. Lubiw, and S. Verdonschot. Gabriel triangulations and angle-monotone graphs: Local routing and recognition. In Proceedings of the 24th International Symposium on Graph drawing (GD 2016), pages 519-531, 2016.
[4] P. Bose, J.-L. D. Carufel, P. Morin, A. van Renssen, and S. Verdonschot. Towards tight bounds on thetagraphs: More is not always better. Theoretical Computer Science, 616:70-93, 2016.
[5] K. Clarkson. Approximation algorithms for shortest path motion planning. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC '87, pages 56-65, New York, NY, USA, 1987. ACM.
[6] H. R. Dehkordi, F. Frati, and J. Gudmundsson. Increasing-chord graphs on point sets. Journal of Graph Algorithms and Applications, 19(2):761-778, 2015.
[7] J. M. Keil. Approximating the complete euclidean graph. In R. Karlsson and A. Lingas, editors, $1 s t$ Scandinavian Workshop on Algorithm Theory, pages 208-213, Berlin, Heidelberg, 1988.
[8] A. Lubiw and D. Mondal. Construction and local routing for angle-monotone graphs. Journal of Graph Algorithms and Applications, 23(2):345-369, 2019.
[9] G. Narasimhan and M. Smid. Geometric spanner networks. Cambridge University Press, 2007.

[^0]: *Department of Computer Science, University of Bojnord, Bojnord, Iran. d.bakhshesh@ub.ac.ir
 ${ }^{\dagger}$ Department of Mathematical Sciences, Yazd University, Yazd, Iran. mfarshi@yazd.ac.ir

