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Angle-Monotonicity of theta-graphs for points in convex position

Davood Bakhshesh∗ Mohammad Farshi†

Abstract

For a real number 0 < γ < 180◦, a geometric path
P = (p1, . . . , pn) is called angle-monotone with width γ
from p1 to pn if there exists a closed wedge of angle γ
such that every directed edge −−−−→pipi+1 of P lies inside the
wedge whose apex is pi. A geometric graph G is called
angle-monotone with width γ if for any two vertices p
and q in G, there exists an angle-monotone path with
width γ from p to q. In this paper, we show that for
any integer k ≥ 1 and any i ∈ {2, 3, 4, 5}, the theta-
graph Θ4k+i on a set of points in convex position is
angle-monotone with width 90◦ + iθ

4 , where θ = 360◦

4k+i .
Moreover, we present two sets of points in the plane, one
in convex position and the other in non-convex position,
to show that for every 0 < γ < 180◦, the graph Θ4 is
not angle-monotone with width γ.

1 Introduction

Let S be a set of points in the plane. For two points
p, q ∈ S, the Euclidean distance between p and q is
denoted by |pq|. A geometric graph G = (S,E) is
a weighted graph such that any edge (x, y) of G is a
straight-line segment between x and y and the weight of
(x, y) is |xy|. The length of a path P = (p1, p2, . . . , pr)
between p1 and pr in G is denoted by |P |, and it is

defined as |P | =
∑r−1
i=1 |pipi+1|. For any two points

p, q ∈ S, the stretch factor (or dilation) between p and
q in a geometric graph G is the ratio of the length of
a shortest path between p and q in G over |pq|. The
stretch factor of a geometric graph G is the maximum
stretch factor between all pairs of vertices of G.

Let t > 1 be a real number. A geometric graph G is
called a t-spanner if the stretch factor of G is at most
t. In Computational Geometry, constructing the ge-
ometric graphs with low stretch factor, small number
of edges (small size) and low weight is an important
problem. We refer the reader to the book [9] to study
t-spanners and their algorithms.

Let θ > 0 be a real number. In [6], Dehkordi et al.,
introduced θ-paths. Let W θ

p be a 90◦ closed wedge de-
limited by the rays starting at p with the slopes θ− 45◦

and θ+ 45◦. A path (p1, p2, . . . , pn) is called a θ-path if
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for every integer i with 1 ≤ i ≤ n− 1, the vector −−−−→pipi+1

lies in the wedge W θ
pi . Using the concept of θ-paths,

Bonichon et al. [3] introduced angle-monotone graphs.
A geometric graph G = (S,E) is called angle-monotone
if for any two points u, v ∈ S, there is a real number
θ > 0 such that G contains a θ-path between u and
v. Bonichon et al. [3] generalized the concept of angle-
monotone graphs to angle-monotone graphs with width
γ. Let γ be a real number with 0 < γ < 180◦. A geo-
metric path P = (p1, . . . , pn) is called angle-monotone
with width γ from p1 to pn if for some closed wedge
of angle γ, every vector −−−−→pipi+1 lies in the wedge whose
apex is pi (see Figure 1).
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Figure 1: An angle-monotone path between x and y
with width γ = 145◦.

A geometric graph G is called angle-monotone with
width γ if for any vertex p of G, there is an angle-
monotone path with width γ from p to all other vertices
of G. It is remarkable that if a path is angle-monotone
with width γ from x to y, then the path is also angle-
monotone with width γ from y to x.

In [6], Dehkordi et al. show that any Gabriel triangu-
lation is an angle-monotone graph with width 90◦. In
[8], Lubiw and Mondal show that for any set of points in
the plane, there is an angle-monotone graph with width
90◦ with a subquadratic size. Furthermore, they showed
that for any angle β with 0 < β < 45◦, and for any
set of points in the plane, there is an angle-monotone
graph with width (90◦ + β) of size O(nβ ). Bakhshesh

and Farshi [1] present a point set in the plane such that
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its Delaunay triangulation is not angle-monotone with
width less than 140◦. Bakhshesh and Farshi [2] prove
that the minimum value of an angle γ such that for
any set of points in the plane there is a plane angle-
monotone graph with width γ is equal to 120◦.

One of the most popular graphs in computational
geometry are theta-graphs which were introduced by
Clarkson [5] and independently by Keil [7]. Informally,
for every point set S in the plane and an integer m ≥ 2,
the theta-graph Θm is constructed by partitioning the
plane into m cones at each point p ∈ S, and joining
the closest point to p at each cone (in the next section,
closest will be defined). Bonichon et al. [3] proved that
for any set of points in the plane, half-Θ6-graph, a plane
subgraph of Θ6, whose edges are obtained by selecting
every other cone, i.e., alternate cones, is angle-monotone
with width 120◦. In [6], Dehkordi et al. prove that for
every set of n points in the plane that are in convex
position, there exists an angle-monotone graph (angle-
monotone graph with width 90◦) with O(n log n) edges.
To the best of our knowledge, it is unknown if the theta-
graphs except Θ6 are angle-monotone with a constant
width.

In this paper, we show that for any set of points
in convex position, and any integer k ≥ 1 and any
i ∈ {2, 3, 4, 5}, the theta-graph Θ4k+i is angle-monotone
with width 90◦ + iθ

4 , where θ = 360◦

4k+i . Moreover, we
present two sets of points in the plane, one in convex
position and the other in non-convex position, to show
that for every 0 < γ < 180◦, the graph Θ4 is not angle-
monotone with width γ.

2 Preliminaries

Let m ≥ 3 be an integer, and let θ = 2π
m be a real

number. For any integer i with 0 ≤ i < m and a point p
in the plane, letRpi be the ray emanating from p making
the angle θ × i = 2πi/m with the positive x-axis (the
angles are considered in counter-clockwise). Let Cpi be
the cone which is constructed by the rays Rpi and Rpi+1.
Note that we assume that Rpm = Rp0. For a point r and
a cone Cpi , we say Cpi contains r (or, r ∈ Cpi ) if r lies
strictly between Rpi and Rpi+1, or lies on Rpi+1. If r lies
on Rpi , then r 6∈ Cpi . For a point set S, the theta-graph
Θm is constructed as follows. For each point p ∈ S,
we partition the plane into m cones Cp0 , C

p
1 , . . . , C

p
m−1

(see Figure 2). Then, for each cone Cpi containing at
least one point of S other than p, let ri ∈ Cpi be a point
such that |pr′i| is minimum where r′i is the perpendicular
projection of ri onto the bisector of Cpi . Then, we add
the edge (p, ri) to the graph. We assume that a pair
(a, b) is a directed edge. We call the point r the closest
point to p in Cpi . For a point q ∈ Cpi , the canonical
triangle Tpq is the isosceles triangle which is constructed
by the rays of Cpi and the line through q perpendicular

p

Cp
0

Cp
1

Cp
m−1

Cp
m−2

Figure 2: Partition the plane into m = 18 cones with
apex at p.

to the bisector of Cpi . For more details on theta-graphs,
see [9].

Let S be a set of n ≥ 3 points in the plane that are
in convex position. In the following, when we use the
notation G, we mean one of the graphs Θ4k+2, Θ4k+3,
Θ4k+4 and Θ4k+5. Throughout the paper, we assume
that p and q are two distinct points in S and suppose,
without loss of generality, that q ∈ Cp0 . Let WO be the
wedge with apex at the origin O that is the union of
all cones COt with

⌈
m−1

4

⌉
≤ t ≤

⌈
m−2

2

⌉
. Let W ′O be

the reflection of WO with respect to the point O. Now,
let UO be a wedge with apex at the origin O such that
UO =W ′O ∪ CO0 (see Figure 3).

WO

m = 4k + 2

WO

m = 4k + 3

WO

m = 4k + 4

WO

m = 4k + 5

UO
UO

UO UO

O O

OO

Figure 3: The wedges WO and UO for the different val-
ues of m.
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3 Angle-monotonicity of theta-graphs

In this section, we show that for any integer k ≥ 1
and any i ∈ {2, 3, 4, 5}, the theta-graph Θ4k+i is angle-
monotone with width 90◦ + iθ

4 . To this end, we show
that there is an angle-monotone path between p and q
in G with width 90◦ + iθ

4 . Let P = (p = v0, v1, . . . , vl)
be the directed path in G such that vi+1 ∈ Cvi0 is the
closest point to vi, and vl is the last vertex of the path
P that lies in Tpq. Let P̈ be the directed path which
is obtained by reversing the direction of all edges of
P . If vl = q, then obviously P is an angle-monotone
path from p to q with width θ. Then, we are done.
Now, in what follows, we assume that vl 6= q. Suppose,
without loss of generality, that q is below P ∪ Cvl0 (see
Figure 4). Let Q = (q = a0, a1 . . . , ag = vl) be the

p

q

vl

P

Figure 4: The path P .

path constructed by the algorithm Θ-Walk(q, vl) (see
Algorithm 1). The path Q is a path between q and vl
in G such that for any ai there exists a cone Caij such
that vl ∈ Caij and (ai, ai+1) is an edge of G.

Algorithm 1: Θ-Walk(a, b) (see [9])

output: A path between a and b in theta-graphs
1 a0 = a;
2 i := 0;
3 while ai 6= b do
4 s := an integer such that b ∈ Cais ;
5 ai+1 := a point of Cais ∩ S\{ai} such that

(ai.ai+1) is an edge of Θk;
6 i := i+ 1;

7 end
8 return the path (a0, a1, . . ., ai);

3.1 The graphs Θ4k+2 and Θ4k+4

We first prove the following lemma.

Lemma 1 If G = Θ4k+2, then every edge (ai, ai+1) of
the path Q lies in the wedge Wai .

Proof. Let `1 be the horizontal line passing through
vl, and `2 be the line passing through vl that forms an

angle θ with the positive x-axis. Let c1 and c2 be the
intersection of `1 and `2 with the sides of the triangle
Tpq which are incident to p (see Figure 5). Based on

vl

q

`1

`2 c2

c1

p

d1

d2

y

x

Figure 5: Illustrating the proof of Lemma 1.

the construction of the path P , the vertex vl−1 lies in
the quadrilateral pc1vlc2. Let j be an integer such that
q ∈ Cvlj . Since we assume that q is below P ∪ Cvl0 , we
have 3k + 2 ≤ j ≤ 4k + 1. Since q ∈ Cvlj , we have
vl ∈ Cqj−(2k+1). Consider the triangle Tqvl . Let x and y

be the two other vertices of Tqvl as depicted in Figure 5.
Let d1 6= vl be the intersection of `1 and Tqvl , and let
d2 6= vl be the intersection of `2 and Tqvl . It is notable
that it is possible that the segment xy completely lies
on the line `2. In this case, we assume that d2 = y.
Now, if any vertex u of the path Q lies in the triangle
4vlyd2, since vl−1 lies in the quadrilateral pc1vlc2, the
triangle quvl−1 contains the vertex vl that contradicts
the convexity of the points. Hence, no vertices of Q lie
in the triangle 4vlyd2. By similar reasons, no vertices
of Q lie in the triangle 4qvlp. Since Cvl0 ∩ Tpq does not
contain any point of S, the path Q completely lies in
the triangle 4qd1vl. Then, for any edge (ai, ai+1) of Q,
there is an integer t with j−(2k+1) ≤ t ≤ 2k such that
ai+1 ∈ Cait . Since 3k+ 2 ≤ j ≤ 4k+ 1, clearly (ai, ai+1)
lies in the wedge Wai . �

Now, we have the following lemma.

Lemma 2 If G = Θ4k+2, then every edge (x, y) of the
path P ∪ Q̈ lies in the wedge Ux.

Proof. By Lemma 1, every edge (a, b) of Q lies in the
wedge Wa. Therefore, every edge (b, a) of Q̈ lies in the
wedge W ′b. On the other hand, every edge (vi, vi+1) of
P lies in the cone Cvi0 . Since UO = W ′O ∪ CO0 , every
edge (x, y) of the path P ∪ Q̈ lies in the wedge Ux. �

Theorem 3 For any set S of points in the plane that
are in convex position and for any integer k ≥ 1, the
graph G = Θ4k+2 is angle-monotone with width 90◦+ θ

2 .

Proof. Consider the points p and q. By Lemma 2, ev-
ery edge (x, y) of the path P ∪ Q̈ lies in the wedge Ux.
Therefore, the path P ∪ Q̈ is an angle-monotone path
from p to q in G with width kθ + θ. Note that for
G = Θ4k+2, the angle of the wedge Ux is kθ + θ. Since
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θ = 360◦

4k+2 , we have kθ+θ = 90◦− θ
2 +θ = 90◦+ θ

2 . Hence,

P ∪ Q̈ is an angle-monotone path with width 90◦ + θ
2 .

This completes the proof. �

Similar to the proof of Theorem 3, for G = Θ4k+4 with
k ≥ 1, we can prove that the path P ∪ Q̈ is an angle-
monotone path from p to q with width (k + 1)θ + θ =
90◦ + θ. Note that for G = Θ4k+4, the angle of the
wedge Ux is (k + 1)θ + θ. Hence, we have the following
theorem.

Theorem 4 For any set S of points in the plane that
are in convex position and for any integer k ≥ 1, the
graph G = Θ4k+4 is angle-monotone with width 90◦+θ.

In [3], Bonichon et al., show that any angle-monotone
graph with width γ < 180◦ is a t-spanner with t =
1/ cos γ2 . Hence, we have the following result.

Corollary 1 For any set of points in the plane that
are in convex position and for any integer k ≥ 1, the
graphs Θ4k+2 and Θ4k+4 have the stretch factor at most
1/cos

(
π
4 + θ

4

)
and 1/cos

(
π
4 + θ

2

)
, respectively.

3.2 The graphs Θ4k+3 and Θ4k+5

We first assume that G = Θ4k+3. Here, we present an
algorithm that finds an angle-monotone path P between
p and q in G with a constant width. The algorithm is
as follows. It first finds the path P = (p = v0, . . . , vl)
which was introduced earlier. If vl = q, then clearly
P = P is an angle-monotone path with width θ, and we
are done. Now, in the following we assume that vl 6= q.
Let a be the topmost vertex of the triangle Tpq and let
b 6= p be the other vertex of Tpq. Let m be the midpoint
of ab. The algorithm considers the following cases.

• Case 1: q lies on the segment am. Now, let
Q = (q = a0, . . . , vl) be the path constructed by
the algorithm Θ-Walk(q, vl). Then, the algorithm
outputs the path P = P ∪ Q̈.

• Case 2: q lies on the segment bm. Let P ′ = (q =
u0, . . . , us) be the path in G such that ui+1 ∈ Cui

2k+1

and ui+1 is the closest point to ui, and us is the last
vertex of the path P ′ that lies in Tqp. Let b′ be the
topmost vertex of the triangle Tqp and let a′ be the
bottommost vertex of Tqp. Let m′ be the midpoint
of a′b′. Since q ∈ Cp0 , it is easy to see that p lies on
the segment a′m′. Now, there are two cases:

– (I): P and P ′ have a common vertex w. The
algorithm outputs the path R which is formed
by the portion of P from v0 to w followed by
the portion of P ′ from w to q.

– (II): P and P ′ do not have any common ver-
tex. Now, consider two following cases: (a):

there is a vertex g 6= q of the path P ′ be-
low the path P . (b): all vertices of P ′ are
above the path P . For the case (a), let uh
be the last vertex of P ′ below the path P
and let Q′ be the constructed path by the
algorithm Θ-Walk(p, uh). Then, the algo-
rithm outputs path P = P ′ ∪ Q̈′. For the
case (b), first the path Q = Θ-Walk(q, vl) is
constructed. Then, the algorithm outputs the
path P = P ∪ Q̈.

For more details, see Algorithm 2.

Algorithm 2: Angle-Monotone-Path-
Θ4k+3(p, q)
output: An angle-monotone path between p and q in Θ4k+3

1 P := ∅;
2 Compute the path P = (p = v0, . . . , vl);
3 if vl 6= q then
4 if q lies on the segment “am” then
5 Q := Θ-Walk(q, vl);

6 P := P ∪ Q̈;

7 end
8 else
9 Compute the path P ′ = (q = u0, . . . , us);

10 if P and P ′ have a common vertex w then
11 R := the path which is formed by the portion of P

from v0 to w followed by the portion of P ′ from w
to q;

12 P := R;

13 end
14 else
15 if there is a vertex g 6= q of the path P ′ below

the path P then
16 uh := the last vertex of P ′ below P ;

17 Q′ := Θ-Walk(p, uh);

18 P := P ′ ∪ Q̈′;
19 end
20 else
21 Q := Θ-Walk(q, vl);

22 P = P ∪ Q̈;

23 end

24 end

25 end

26 end
27 else
28 P := P ;
29 end
30 return P;

In the following, we show that the path P returned
by Algorithm 2 is an angle-monotone path between p
and q with width 90◦+ 3θ

4 . We first prove the following
lemma.

Lemma 5 If q lies on the segment am, then every edge
(ai, ai+1) of the path Q = (q = a0, . . . , vl) lies in the
wedge Wai .

Proof. Let j be an integer such that vl ∈ Cqj . Since we
assumed that q is below P ∪ Cvl0 , we have k + 1 ≤ j ≤
2k + 1. Consider the triangle Tqvl . Let x and y be the
two other vertices of Tqvl as depicted in Figure 6(a). It is
notable that the line passing through p and m is parallel
to the line passing through q and y. Then, since q lies on
the segment am, the point p is below the line passing
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through q and y. Hence, because of the convexity of
the points, no points of Q lie in the triangle 4qvly.
Consider the lines `1 and `2, and the points d1 and d2

p

a

b

m

qvl

x

y

`1

`2

d2 d1

(a) Illustrating the proof of Lemma 5.

p

a

b

m

quj
vi

vi+1

(b) Illustrating the proof of Lemma 8.

Figure 6: Illustrating the proofs of Lemma 5 and
Lemma 8.

as defined in the proof of Lemma 1. By the reasons
similar to the proof of Lemma 1, we can prove that the
path Q completely lies in the triangle 4qd1vl. Then,
for any edge (ai, ai+1) of Q, there is an integer t with
j ≤ t ≤ 2k+1 such that ai+1 ∈ Cait . Clearly, this shows
that (ai, ai+1) lies in the wedge Wai . �

Now, we prove the following lemma.

Lemma 6 If q lies on the segment bm, then every edge
(ri, ri+1) of the path R lies in the wedge Uri .

Proof. According to Algorithm 2, the path R is con-
structed when the paths P = (v1, . . . , vl) and P ′ =
(u1, . . . , us) have a common vertex. It is clear that for
every edge (vi, vi+1) of the path P , we have vi+1 ∈ Cvi0 ,
therefore (vi, vi+1) lies in the wedge Uvi . On the other
hand, for every edge (ui, ui+1) of P ′, we have ui+1 ∈
Cui

2k+1. Therefore, ui ∈ C
ui+1

4k+2 or ui ∈ C
ui+1

0 . Hence,
the edge (ui+1, ui) lies in the wedge Uui+1

. This com-
pletes the proof. �

Let YO be a wedge with YO =
(⋃4k+2

i=3k+2 C
O
i

)
∪
(
CO2k+1

)′
(
(
CO2k+1

)′
is the reflection of CO2k+1 with respect to the

origin O). It is clear that the angle of YO is equal to
(k + 1)θ + θ/2. Now, we prove the following lemma.

Lemma 7 If q lies on the segment bm and the paths P
and P ′ do not have any common vertex, and there is a
vertex g 6= q of the path P ′ below the path P , then every
edge (ci, ci+1) of the constructed path P by Algorithm 2
lies in the wedge Yci .

Proof. Le uh be the last vertex of P ′ below P . Accord-
ing Algorithm 2, P = P ′∪ Q̈′ that Q′ is the constructed
path by Θ-Walk(p, uh). It is clear that for every edge
(ui, ui+1) of P ′, we have ui+1 ∈ Cui

2k+1, and therefore

ui ∈
(
C
ui+1

2k+1

)′
. Hence, (ui+1, ui) lies in the wedge Yui+1 .

Let Q′ = (p = a′1, a
′
2, . . . , a

′
z = uh). We claim that ev-

ery edge (a′i, a
′
i+1) lies in the wedge Ya′i . Since p lies

on the segment a′m′, by the arguments similar to the
proof of Lemma 5, the claim is proved. These show that
if (ci, ci+1) be an edge of the path P, it lies in the wedge
Yci . �

Now, we have the following lemma.

Lemma 8 If q lies on the segment bm and the paths P
and P ′ do not have any common vertex, and there is no
vertex g 6= q of the path P ′ below the path P , then every
edge (ri, ri+1) of the constructed path P by Algorithm 2
lies in the wedge Uri .

Proof. Let uj be a vertex of P ′ above the path P .
Let vi be the last vertex of P to the left of uj (see
Figure 6(b)). Since p is to the left of uj , the vertex vi
always exist. Since there is no vertex g 6= q of the
path P ′ below the path P , we have uj−1 = q. Now,
consider the triangle Tvivi+1 . Since P and P ′ have no
common vertex, clearly uj 6∈ Tvivi+1

. Hence, if vi 6= p,
then the triangle 4pujvi+1 contains the vertex vi which
contradicts the convexity of the points. Then, vi = p.
On the other hand, since vl 6= q, we must have vi+1 6∈
Tquj , and therefore vl ∈ Cqt with k + 1 ≤ t < 2k + 1.
Now, by the arguments similar to the proof of Lemma 5,
we can prove that every edge (ai, ai+1) of the path Q
lies in the wedge Wai . Hence, it is clear that every
edge (ri, ri+1) of the path P = P ∪ Q̈ lies in the wedge
Uri . �

Based on Lemmas 5, 6, 7 and 8, any path constructed by
Algorithm 2 is angle-monotone with width (k+ 1)θ+ θ

2 .

Since θ = 360◦

4k+3 , we have (k+ 1)θ+ θ
2 = 90◦+ 3θ

4 . Then,
the following theorem holds.

Theorem 9 For any set S of points in the plane that
are in convex position and for any integer k ≥ 1, Θ4k+3

is angle-monotone with width 90◦ + 3θ
4 .

By the arguments similar to the proof of Theorem 9,
for G = Θ4k+5 with k ≥ 1, we can prove that the path
P is an angle-monotone path from p to q with width
(k + 1)θ + θ

2 . Since θ = 360◦

4k+1 , we have (k + 1)θ + θ
2 =

90◦ + 5θ
4 . Then, the following theorem holds.

Theorem 10 For any set S of points in the plane that
are in convex position and for any integer k ≥ 1, Θ4k+5

is angle-monotone with width 90◦ + 5θ
4 .

We close this section with the following result.
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Corollary 2 For any set of points in the plane that are
in convex position, the graphs Θ4k+3 and Θ4k+5 with
k ≥ 1 have the stretch factor at most 1/cos

(
π
4 + 3θ

8

)
and 1/cos

(
π
4 + 5θ

8

)
, respectively.

4 Theta-graph Θ4

In the following, we present two point sets, one in convex
position and the other in non-convex position, to show
that the graph Θ4 of the point set is not angle-monotone
for any width γ > 0. Let p0, p2, p3 and p5 be the
vertices of a rectangle with length 2 and width 1 + ε,
where ε > 0 is a small real number (see Figure 7(a)).
Let p1 and p4 be the midpoints of the segments p0p2

and p3p5, respectively. Now, let P = {p0, p1, . . . , p5}.

p0 p2

p3p5

p1

p4

1 + ε

11

1 1

(a) The point set P .

p0 p2

p3p5

p1

p4

p′0
p′2

p′3p′5

p′1

p′4

(b) The point set V = P ∪
P ′.

Figure 7: The point sets P and V .

Consider the theta-graph Θ4 on P . It is not hard to see
that the edge set E of Θ4 is

E = {(p0, p1), (p1, p2), (p2, p3), (p3, p4), (p4, p5), (p5, p0)}.

Now, since p0p2 and p3p5 are parallel, it is obvious that
for any 0 < γ < 180◦, any path between p1 and p4 is
not angle-monotone with width γ.

Let P ′ = {p′0, p′1, . . . , p′5} be a copy of point set P
such that the points of P ′ placed below the points of P
as depicted in Figure 7(b). Let V = P ∪ P ′. It is easy
to see that the edge set F of the theta-graph Θ4 on the
point set V is

F = E ∪ {(p′0, p′1), (p′1, p
′
2), (p′2, p

′
3), (p′3, p

′
4), (p′4, p

′
5), (p′5, p

′
0)}

∪ {(p′0, p5), (p′1, p4), (p′2, p3)}.

It is obvious that for any 0 < γ < 180◦, any path be-
tween p1 and p4 is not angle-monotone with width γ.
Now, we have the following theorem.

Theorem 11 For any angle 0 < γ < 180◦, the graph
Θ4 is not necessarily angle-monotone with width γ.

5 Remarks

In Corollaries 1 and 2, we examined the stretch
factor of the graphs Θ4k+2, Θ4k+3, Θ4k+4 and Θ4k+5

when the points placed in convex position. In [4],
Bose et al., show that the stretch factor of the
graphs Θ4k+2, Θ4k+3, Θ4k+4 and Θ4k+5 are at most
1 + 2 sin(θ/2), cos(θ/4)/ (cos(θ/2)− sin(3θ/4)),
1 + 2 sin(θ/2)/ (cos(θ/2)− sin(θ/2)) and
cos(θ/4)/ (cos(θ/2)− sin(3θ/4)), respectively.

a

b

c

d

Figure 8: The lower bound
for the width of Θ4k+2.

By comparing the
results of Corollar-
ies 1 and 2 with
the results in [4],
we find that the re-
sults of the corollar-
ies do not improve
the stretch factors
known in [4].

In the following,
we indicate whether
the bounds on the
width presented in Theorems 3, 4, 9 and 10 are tight
or not. Consider the graph Θ4k+2. Figure 8 shows that
the upper bound on the width presented in Theorems 3
is tight. We place a vertex c close to the lower corner
of Tab that is sufficiently far from the vertex b. We also
place a vertex d close to the upper corner of Tba that is
sufficiently far from the vertex a. Now, the graph Θ4k+2

of four points a, b, c and d is as shown in Figure 8. We
can easily see that each of the paths acb and adb are
angle-monotone with width 90◦ + θ

2 − ε, for some real
number ε > 0 that only depends on the distance be-
tween c (d) and the lower corner (upper corner) of Tab
(Tba). If ε approaches zero, then the width approaches
90◦ + θ

2 .

For Theorems 4, 9 and 10, we do not know whether
the bounds for the width is tight or not.

6 Conclusion

In this paper, we showed that for any set of points in
the plane that are in convex position and for any integer
k ≥ 1 and any i ∈ {2, 3, 4, 5}, the theta-graph Θ4k+i is
angle-monotone with width 90◦ + iθ

4 , where θ = 360◦

4k+i .
Moreover, we presented two sets of points in the plane,
one in convex position and the other in non-convex po-
sition, to show that for every 0 < γ < 180◦, the graph
Θ4 is not angle-monotone with width γ. It is notable
that our technique in Section 3.2, does not work for Θ5

because by the proposed technique, the resulting path P
is angle-monotone with width 90◦ + 5θ

4 . Since for Θ5,

we have θ = 2π
5 ≡ 72◦. Then, 90◦ + 5θ

4 = 180◦. We
conjecture for any set of points in convex position, Θ5

is angle-monotone with a constant width. We tried to
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prove our conjecture but we did not succeed. Finally,
we present the following conjecture.

Conjecture 1 For any set of points in the plane that
are not convex position, for any integer k ≥ 1 and any
i ∈ {2, 3, 4, 5}, the theta-graph Θ4k+i is angle-monotone
with width 90◦ + iθ

4 , where θ = 360◦

4k+i .

References

[1] D. Bakhshesh and M. Farshi. Angle-monotonicity of
Delaunay triangulation. Computational Geometry,
94:101711, 2021.

[2] D. Bakhshesh and M. Farshi. On the plane
angle-monotone graphs. Computational Geometry,
100:101818, 2022.

[3] N. Bonichon, P. Bose, P. Carmi, I. Kostitsyna,
A. Lubiw, and S. Verdonschot. Gabriel triangu-
lations and angle-monotone graphs: Local routing
and recognition. In Proceedings of the 24th Inter-
national Symposium on Graph drawing (GD 2016),
pages 519–531, 2016.

[4] P. Bose, J.-L. D. Carufel, P. Morin, A. van Renssen,
and S. Verdonschot. Towards tight bounds on theta-
graphs: More is not always better. Theoretical Com-
puter Science, 616:70 – 93, 2016.

[5] K. Clarkson. Approximation algorithms for short-
est path motion planning. In Proceedings of the
Nineteenth Annual ACM Symposium on Theory of
Computing, STOC ’87, pages 56–65, New York, NY,
USA, 1987. ACM.

[6] H. R. Dehkordi, F. Frati, and J. Gudmundsson.
Increasing-chord graphs on point sets. Journal of
Graph Algorithms and Applications, 19(2):761–778,
2015.

[7] J. M. Keil. Approximating the complete euclidean
graph. In R. Karlsson and A. Lingas, editors, 1st
Scandinavian Workshop on Algorithm Theory, pages
208–213, Berlin, Heidelberg, 1988.

[8] A. Lubiw and D. Mondal. Construction and lo-
cal routing for angle-monotone graphs. Journal of
Graph Algorithms and Applications, 23(2):345–369,
2019.

[9] G. Narasimhan and M. Smid. Geometric spanner
networks. Cambridge University Press, 2007.


