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Abstract

The importance of processing large-scale data is grow-
ing rapidly in contemporary computation. In order to
design and analyze practical distributed algorithms, re-
cently, the MPC model has been introduced as a the-
oretical framework. In this paper, we present the ge-
ometric spanner construction in the Massively Parallel
Computing (MPC) model. Constructing #-graph using
the given ¢, we modified distributed range tree to find
the nearest point to the apex of a -cone efficiently and
form a (1 + €)-spanner in O(1) rounds and O(S) time,
where S is the memory size of a single machine.

1 Introduction

We consider the problem of finding a geometric spanner
for a set of points in R? in the MPC model. In this
section we talk about both the spanner and MPC model
and also we motivate our work. Then the sketch of the
proof is presented.

1.1 Spanners

Given an edge-weighted graph G = (V,E), the t-
spanner of G is a weighted graph S = (V,E’) where
E’' C E and for every two vertices u and v, dg(u,v) <
t - dg(u,v), where dg(u,v) indicates the shortest path
distance between v and v in graph S. That is, the span-
ner of graph G, is a graph which preserve the distances
by a ¢t multiplicative factor. For a fixed graph G, the
smallest ¢, which preserve spanner property is called di-
lation or stretch factor.

Among general graphs, we are focused on Euclidean
geometric graphs, which are complete graphs with a Eu-
clidean metric edge weight function. Hence, a geometric
spanner is a complete Euclidean graph, in which for any
two points we have the weight of edge (u,v) < |uv],
where |uv| indicates the Euclidean distance between
points u and v.

Also, we can view a spanner as compression for the
main graph. Assuredly, the fewest edges it has, the more
compressed it is considered. However, we look forward
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to keeping the dilation as low as possible. Assuming
Erdos girth conjecture, there is a tight bound for general
graphs that there is a (2k —1) — spanner with O(n'+1/%)
edges [19].

The extensiveness of spanners’ applications like ap-
proximating shortest path queries, routing distributed
and parallel algorithms, designing work efficient PRAM
algorithms [13], and etc. make researchers come up with
many ideas and variants to build them efficiently.

1.2 MPC Model and Geometric Problems

The importance of processing large scale data-set is be-
coming more crucial every day. Over past years we have
faced exponential growth in the speed of generating new
data. Recently, many tools have been developed to pro-
cess these data practically, among them Map-Reduce
model [10], Hadoop [21], Spark [22] and Dryad [16]. Due
to the diversity of tools and methods, some general the-
oretical models were built to conceptualise current and
forthcoming tools. One of the most realistic and practi-
cal abstract models is Massively Parallel Computing or
MPC for short, which was introduced by Karloff et. al
[17], as a computation model for Map-Reduce.

In this model [7], [14], [17], it is assumed that there
are M machines, each of which has a memory of size
S known as local memory and the given input size is
N which distributed arbitrarily. Usually, we assume
the memory size is polynomially smaller than the in-
put size, i.e. S = O(N%) where 0 < a < 1. As the
whole data must fit into machines, we consider M > %
Also, it is common to add polylog factor to the number
of machines, i.e. M = O(%) = O(N/S poly(log N)).
Also, despite K-machine model [18], there is no point to
point connection between machines, so there is a 5(5 )
communication limit for each machine.

However, while we consider graph problems, given a
graph G = (V, E) the total memory N is considered
as the number of graph edges E which can be O(n?)
where n = |V|. But we are interested in settings where
local memory is small. Thus, there are three studied
regimes in the MPC model for graph problems; Strong
superlinear where S > n!*e for a constant ¢ > 0, near-
linear where S = O(n), and strongly sublinear where
S =n" for a constant v < 1.

In geometric problems, especially in geometric
graphs, as the weight function is defined implicitly with-
out keeping all edge weights on memory, we only con-
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sider in the later regime. Henceforth, from now on we
consider n points and M = O(n'~7) machines where

each of them has S = O(n”) local memory for a con-
stant v < 1.

1.3 Prior Works

There is an extensive line of research on spanners and
also geometric spanners, especially after Chew [9] intro-
duced them in 1986 but term spanner coined by Peleg
and Ullman [20]. In addition to some surveys [11], [15],
there is a book completely about geometric spanner [19].

Although there is a classic greedy algorithm for com-
puting geometric spanner [4], there are many works to
reduce the running time while preserving useful proper-
ties like minimizing maximum degree or not using too
many more edges. E.g. using #-graph [5] a geometric
spanner can be built in O(nlogn?=1) time with O(n)
edges.

Assuming a large data set, there are some works
on streaming mode like [6], which construct a span-
ning tree in a single path with O(min(m, kn'*'/*))
edges. Also there is a recent work for general graph
by Ghaffari et.al [8], constructs a O(k'T°(1))-spanner
in O(loglog n) rounds in strongly sublinear regime with
O(n**1/*.log k) many edges. Also Ghodsi et al. provide
a constant round algorithm in MapReduce framework
to build the geometric spanner in L; metric in R? using
O(n/e?) edges [3].

In recent years, also, there is a growing line of re-
search to solve the geometric problems in the distributed
model; such as triangulation algorithms in 2D and 3D
[23], or finding the nearest neighbor in K-Machine mode
[12].

1.4 Overview of Method

Our algorithm works as follows, for each cone o we build
a distributed data structure (Next Tree) to obtain the
nearest point inside the cone. Inside each cone, it takes
O(d) rounds to find the point which is the nearest one
with respect to its projection on the representative edge.
This is constant if we naturally assume d is constant. To
obtain constant round complexity for all points, we must
re-distribute sub-trees stored on each machine among
searching round, while we look for the nearest point
image on the representative edge. This leads to an al-
gorithm with constant rounds of computation and O(S)
time.

2 Preliminaries

f-graph We use an approach based on #-graph [1] to
build our spanner. Given constant €, we choose 6 such
that cos260 — sin20 > 1/(1 + ¢). On the other hand,
a f-cone is the intersection of d half-spaces such that

the angle of any two rays emanating at the cone’s apex
and being inside the cone is at most . Hence we define
the canonical cone set C, as a collection of O(1/69~1)
interior disjoint #-cones, where share apex at the origin.
For a p € RY, translating each o € C to the point p,
constructs our f-graph. Choosing one of the edges of
each o € C as representative edge (¢g) the following
lemma from [1] can be stated:

Lemma 1 Let C be a collection of 6-cones, where
cos20 —sin20 > 1/(1 4+ €). Choosing {, as represen-
tative edge for each 0-cone o and connecting each point
p to q € o(p) that its projection on {, minimize the
Euclidean distant to p lead us to a (1 + €)-spanner.

Distributed Range Tree A d-dimensional range
tree is a data structure that can answer orthogonal
range queries in (’)(logUF1 n) time. If d = 1, the range
tree is a balanced binary search tree. For d > 1, the
range tree consists of a primary structure in which ev-
ery node has a range tree on d — 1 dimension for the
point below that node.

Agarwal et al. in [2] show that it is possible to build
a range tree in the MPC model efficiently. As the range
tree should be stored in a distributed fashion, a primary
top tree is built which contains O(s'/®) top nodes of
the range tree. Hence for each node, the top of the sec-
ondary structure build locally and recursively. The pro-
cedure continues by using leaves of the primary struc-
ture and build the tree recursively. We will use this
structure and the result of the following theorem from

[2]:

Theorem 2 Given a set P C R"™, a range tree on P can
be built with size O(nlog? ' n) in constant rounds and
O(s log? s) time which can answer orthogonal queries in
O(1) rounds and O(log?~' n) time in MPC model.

3 Next Tree

First, we consider the definition of Next Tree. The Next
Tree is an augmented distributed range tree that helps
to find the nearest point in a cone to the apex of the
query cone. To build this we amend the range tree [2].

As we discussed earlier, we need a range tree to find
the subset of points inside the query cone o. Also, we
need to find the nearest point ¢ € o(p) to connect it to
p in terms of ¢’s projection to one of o(p) representa-
tive edges or even any arbitrary line at that half-space.
Consider a line in one of the mentioned half-spaces as
{,, We assume that ¢/ the projection of g on ¢, is stored
within q.

To build the Next Tree, we add one dimension to each
point which contains its rank on ¢,. This rank can be
computed easily with a constant round of computation
[14]. Afterward, a (d + 1)-dimension distributed range
tree is built open this augmented point set P,, just like
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the one appeared in [2]. We only alter the query pro-
cedure to find the lowest rank point in the canonical
subset. This leads us to the following lemma:

Lemma 3 For a point set P C R?, Neat Tree can be
built in O(d) rounds, in O(slog?™* ' n) time with size
O(nlog’n).

A query to Next tree is an orthogonal cone o(p). The
desired response is a point ¢ where ¢/, the projection of
q on {4, is the next projected point on £, and ¢ € o(p).

Lemma 4 In d-dimension Next Tree, the next query
can be answered in O(1) rounds and O(log™™ n) time.

Proof. Without loss of generality consider a orthogonal
cone o(p) = (x1,...,x4) which is open to (400, +00).
Just like distributed range tree for each query, we must
go through the data structure. For each x;, where i < d,
our search in Next Tree is a path with at most O(logn)
points. Just like lemma 3, we must repeat it for each d
level. However, at the d+1 level, we take a O(log n) path
just to find the minimum ranked point as the (d + 1)th
coordinate of ¢ is rank of ¢,, which takes O(1) round
and O(log*™! n) time for a single point. O

4 Spanner Construction

Briefly, the procedure of constructing the spanner is as
follows, as algorithm 1 specify, for each canonical cone
o, we transform points and build a Next Tree. Then we
find the nearest point to each cone’s apex and connect
them.

Algorithm 1 Distributed algorithm to build a (1 +
€) — spanner using 6-graph

Require: Point set P, €, n nodes distributed arbitrary
: Compute 6 based on € and canonical 6 - cones C
: for all ¢ in C do
transform_and order_points(o, #,)
T, = build_next_tree(o)
find nearest(P, T,)
end for

@ Gk W

Recall that for each 1 < ¢ < n, o(p;) is translated of
the same canonical cone o € C. Henceforth, we need to
project all points into £, and also transform all points to
form all o(p;) orthogonal. After that, we must compute
the rank of each projected point on ¢, which can be
done in a constant rounds for all points [14]. Hence the
following proposition is inferred:

Proposition 5 In algorithm 1, the procedure trans-
form_and_order_points project the points onto /, and
rank them in O(1) rounds and O(S) time.

Now we must show how find nearest works in par-
allel for all points. If we want to find the nearest point
one by one it takes O(n) rounds to build the spanner
which is unacceptable in our model.

By lemma 4, it is clear that query one point in the
Next Tree requires O(1) rounds of computation. How-
ever, we design an algorithm to find the next point, the
adjacent vertex in the desired spanner, for all points in
constant rounds. To this end, we must be able to initi-
ate the search procedure locally for all machines. Hence,
each machine needs to have the top sub-tree or the mas-
ter node which contains the top O(S1/%) nodes [2]. This
can be done on loggi/s n = O(1) rounds of computation
using the broadcast tree [14]. Afterward, in each ma-
chine M;, s points have been searched and in the next
step their search procedure must continue among set
M; ={My,...,Ms}. As aresult, we can imagine some
cases in which a machine is overwhelmed by Q(S) nodes
to resume its search procedure. To resolve this problem,
at the end of the first searching round, each machine
sends the number of applicant nodes to their destina-
tion machine say M;. As each machine sends a number
to M;, if the sum of these numbers exceeds S, M; should
make a copy of its self and inform nodes about the new
destinations. M; choose these machines randomly. Also
it sends the number of required machines, so using the
broadcast tree, we can handle the distribution. The fol-
lowing lemma shows us that this procedure (algorithm
2) can be done on constant rounds of computation.

Lemma 6 Targeted sub-trees to resume the query pro-
cedure to find neighbour of the point subject to a cone o
can be redistributed to be able to host all requests at a
round, with O(1) rounds of computation and O(S) time.

Proof. Notice that, the total number of points is n and
also a machine requires another helping machine for ev-
ery O(S) applicant point. As S > s =n/M, where s is
the number of points hosted by each machine, the to-
tal number of sub-trees to redistribute is less than M.
This is also an upper bound for redistributing a fixed
sub-tree. Again using the broadcast tree to distribute
the sub-trees. A machine with exceeded query requests
should choose uniformly at random max (S,r/S) ma-
chines, where r is the number of arriving requests. Us-
ing the broadcast tree this will end up in the constant
round. However, if a machine receives more nodes than
its memory size, it should drop extra sub-trees. So, we
consider X; the number of guest sub-trees requested to
join M;. As E[X;] = 1 we can use chernoff bound:
—log®n 1
3 n?2

Pr[X; > logn] < exp( ) <

Using union bound, the probability of no machine re-
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ceive more than O(logn) nodes is:

M
P’I"[X1U"'UX]\/[]SZ
1

1 M _1
n2 n2 " n

So, with high probability, no machine receives more
than logn nodes. Using the fact that S = O(n?), the

lemma concludes. O

Algorithm 2 find nearest(P,T,)

Require: Point set P and its projection on ¢, within,
Pre-computed and stored T,, Constant k& =
logsl/s n = 0(1)

1: Distribute the master node to all machines and set
as current searching node M; on each machine

2: for k times do
Perform the search on M; locally and find the

M machine set to resume the search
Inform M; members about the coming requests
Redistribute the machine M; if necessary

6: end for

Using proposition 5 and lemma 3, we conclude that
the first two lines of the for loop in Algorithm 2 requires
O(1) rounds and O(S) time. Moreover, by lemmas 4
and 6 the find nearest procedure requires O(1) rounds
and O(S) time. Assuming d and e are constants leads
to the following theorem:

Theorem 7 In the MPC model, a geometric (1 + €)-
spanner can be built using O(1) rounds of computation
and O(S) time.

5 Concluding Remarks

We considered constructing a geometric spanner in the
MPC model. Benefiting from #-graph, we designed an
algorithm to build this spanner in constant rounds of
computation. However, we can consider the same prob-
lem to find a spanner with a smaller final degree. Also,
we can consider the problem in dynamic or kinetic mod-
els if we consider the possibility of temporal changes in
our point, with less work.
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