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Foreword
We are pleased to bring you this collection of the accepted papers from the fifth Iranian Conference on Computational
Geometry (ICCG 2022), held at Sharif University of Technology, Tehran, Iran, on February 24, 2022. As ICCG does not
have formal proceedings, the papers presented here could also be submitted to peer-reviewed conferences and journals.

ICCG intends to bring together students and researchers from academia and industry to promote research in the fields
of Combinatorial and Computational Geometry. All submissions to ICCG 2022 were carefully reviewed by the members
of an international Program Committee comprising 19 leading scientists, and at least three review reports were provided for
each paper. Besides paper presentations, the program included one invited talk by Dr. Prosenjit Bose, a renowned computer
scientist from Carleton University, Canada, who gave a presentation in the memory of Dr. Saeed Mehrabi. Due to the
COVID-19 pandemic, ICCG 2022 was forced to run virtually through the excellent facilities provided by Sharif University.
of Technology.

We would like to thank the authors and the invited speaker who contributed to the success of ICCG 2022. We are also
grateful to all PC members for their professional work in providing expert review reports. Last but not least, our gratitude
extends to Sharif University of Technology for generously supporting the conference.

Shahin Kamali and Alireza Zarei (Program Committee Chairs)
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Geometric Spanner in MPC Model

Mohammad Ali Abam∗ Mohammad Reza Bahrami† Peyman Jabbarzade Ganje‡

Abstract

The importance of processing large-scale data is grow-
ing rapidly in contemporary computation. In order to
design and analyze practical distributed algorithms, re-
cently, the MPC model has been introduced as a the-
oretical framework. In this paper, we present the ge-
ometric spanner construction in the Massively Parallel
Computing (MPC) model. Constructing θ-graph using
the given ϵ, we modified distributed range tree to find
the nearest point to the apex of a θ-cone efficiently and
form a (1 + ϵ)-spanner in O(1) rounds and Õ(S) time,
where S is the memory size of a single machine.

1 Introduction

We consider the problem of finding a geometric spanner
for a set of points in Rd in the MPC model. In this
section we talk about both the spanner and MPC model
and also we motivate our work. Then the sketch of the
proof is presented.

1.1 Spanners

Given an edge-weighted graph G = (V,E), the t-
spanner of G is a weighted graph S = (V,E′) where
E′ ⊆ E and for every two vertices u and v, dS(u, v) ≤
t · dG(u, v), where dS(u, v) indicates the shortest path
distance between u and v in graph S. That is, the span-
ner of graph G, is a graph which preserve the distances
by a t multiplicative factor. For a fixed graph G, the
smallest t, which preserve spanner property is called di-
lation or stretch factor.

Among general graphs, we are focused on Euclidean
geometric graphs, which are complete graphs with a Eu-
clidean metric edge weight function. Hence, a geometric
spanner is a complete Euclidean graph, in which for any
two points we have the weight of edge (u, v) ≤ |uv|,
where |uv| indicates the Euclidean distance between
points u and v.

Also, we can view a spanner as compression for the
main graph. Assuredly, the fewest edges it has, the more
compressed it is considered. However, we look forward

∗Department of Computer Science, Sharif University of Tech-
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†Department of Computer Science, Sharif University of Tech-
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‡Department of Computer Science, University of Maryland,
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to keeping the dilation as low as possible. Assuming
Erdös girth conjecture, there is a tight bound for general
graphs that there is a (2k−1)−spanner with O(n1+1/k)
edges [19].

The extensiveness of spanners’ applications like ap-
proximating shortest path queries, routing distributed
and parallel algorithms, designing work efficient PRAM
algorithms [13], and etc. make researchers come up with
many ideas and variants to build them efficiently.

1.2 MPC Model and Geometric Problems

The importance of processing large scale data-set is be-
coming more crucial every day. Over past years we have
faced exponential growth in the speed of generating new
data. Recently, many tools have been developed to pro-
cess these data practically, among them Map-Reduce
model [10], Hadoop [21], Spark [22] and Dryad [16]. Due
to the diversity of tools and methods, some general the-
oretical models were built to conceptualise current and
forthcoming tools. One of the most realistic and practi-
cal abstract models is Massively Parallel Computing or
MPC for short, which was introduced by Karloff et. al
[17], as a computation model for Map-Reduce.

In this model [7], [14], [17], it is assumed that there
are M machines, each of which has a memory of size
S known as local memory and the given input size is
N which distributed arbitrarily. Usually, we assume
the memory size is polynomially smaller than the in-
put size, i.e. S = Õ(Nα) where 0 < α < 1. As the
whole data must fit into machines, we consider M ≥ N

S .
Also, it is common to add polylog factor to the number
of machines, i.e. M = Õ(NS ) = O(N/S poly(logN)).
Also, despite K-machine model [18], there is no point to

point connection between machines, so there is a Õ(S)
communication limit for each machine.

However, while we consider graph problems, given a
graph G = (V,E) the total memory N is considered
as the number of graph edges E which can be O(n2)
where n = |V |. But we are interested in settings where
local memory is small. Thus, there are three studied
regimes in the MPC model for graph problems; Strong
superlinear where S ≥ n1+c for a constant c > 0, near-
linear where S = Õ(n), and strongly sublinear where
S = nγ for a constant γ < 1.

In geometric problems, especially in geometric
graphs, as the weight function is defined implicitly with-
out keeping all edge weights on memory, we only con-
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sider in the later regime. Henceforth, from now on we
consider n points and M = Õ(n1−γ) machines where

each of them has S = Õ(nγ) local memory for a con-
stant γ < 1.

1.3 Prior Works

There is an extensive line of research on spanners and
also geometric spanners, especially after Chew [9] intro-
duced them in 1986 but term spanner coined by Peleg
and Ullman [20]. In addition to some surveys [11], [15],
there is a book completely about geometric spanner [19].

Although there is a classic greedy algorithm for com-
puting geometric spanner [4], there are many works to
reduce the running time while preserving useful proper-
ties like minimizing maximum degree or not using too
many more edges. E.g. using θ-graph [5] a geometric
spanner can be built in O(n log nd−1) time with O(n)
edges.

Assuming a large data set, there are some works
on streaming mode like [6], which construct a span-
ning tree in a single path with O(min(m, kn1+1/k))
edges. Also there is a recent work for general graph
by Ghaffari et.al [8], constructs a O(k1+o(1))-spanner
in O(log log n) rounds in strongly sublinear regime with
O(n1+1/k ·log k) many edges. Also Ghodsi et al. provide
a constant round algorithm in MapReduce framework
to build the geometric spanner in L1 metric in R2 using
O(n/ϵ2) edges [3].
In recent years, also, there is a growing line of re-

search to solve the geometric problems in the distributed
model; such as triangulation algorithms in 2D and 3D
[23], or finding the nearest neighbor in K-Machine mode
[12].

1.4 Overview of Method

Our algorithm works as follows, for each cone σ we build
a distributed data structure (Next Tree) to obtain the
nearest point inside the cone. Inside each cone, it takes
O(d) rounds to find the point which is the nearest one
with respect to its projection on the representative edge.
This is constant if we naturally assume d is constant. To
obtain constant round complexity for all points, we must
re-distribute sub-trees stored on each machine among
searching round, while we look for the nearest point
image on the representative edge. This leads to an al-
gorithm with constant rounds of computation and O(S)
time.

2 Preliminaries

θ-graph We use an approach based on θ-graph [1] to
build our spanner. Given constant ϵ, we choose θ such
that cos 2θ − sin 2θ ≥ 1/(1 + ϵ). On the other hand,
a θ-cone is the intersection of d half-spaces such that

the angle of any two rays emanating at the cone’s apex
and being inside the cone is at most θ. Hence we define
the canonical cone set C, as a collection of O(1/θd−1)
interior disjoint θ-cones, where share apex at the origin.
For a p ∈ Rd, translating each σ ∈ C to the point p,
constructs our θ-graph. Choosing one of the edges of
each σ ∈ C as representative edge (ℓθ) the following
lemma from [1] can be stated:

Lemma 1 Let C be a collection of θ-cones, where
cos 2θ − sin 2θ ≥ 1/(1 + ϵ). Choosing ℓσ as represen-
tative edge for each θ-cone σ and connecting each point
p to q ∈ σ(p) that its projection on ℓσ minimize the
Euclidean distant to p lead us to a (1 + ϵ)-spanner.

Distributed Range Tree A d-dimensional range
tree is a data structure that can answer orthogonal
range queries in O(logd−1 n) time. If d = 1, the range
tree is a balanced binary search tree. For d > 1, the
range tree consists of a primary structure in which ev-
ery node has a range tree on d − 1 dimension for the
point below that node.

Agarwal et al. in [2] show that it is possible to build
a range tree in the MPC model efficiently. As the range
tree should be stored in a distributed fashion, a primary
top tree is built which contains O(s1/5) top nodes of
the range tree. Hence for each node, the top of the sec-
ondary structure build locally and recursively. The pro-
cedure continues by using leaves of the primary struc-
ture and build the tree recursively. We will use this
structure and the result of the following theorem from
[2]:

Theorem 2 Given a set P ⊂ Rn, a range tree on P can
be built with size O(n logd−1 n) in constant rounds and
O(s logd s) time which can answer orthogonal queries in
O(1) rounds and O(logd−1 n) time in MPC model.

3 Next Tree

First, we consider the definition of Next Tree. The Next
Tree is an augmented distributed range tree that helps
to find the nearest point in a cone to the apex of the
query cone. To build this we amend the range tree [2].

As we discussed earlier, we need a range tree to find
the subset of points inside the query cone σ. Also, we
need to find the nearest point q ∈ σ(p) to connect it to
p in terms of q’s projection to one of σ(p) representa-
tive edges or even any arbitrary line at that half-space.
Consider a line in one of the mentioned half-spaces as
ℓσ, We assume that q′σ the projection of q on ℓσ is stored
within q.
To build the Next Tree, we add one dimension to each

point which contains its rank on ℓσ. This rank can be
computed easily with a constant round of computation
[14]. Afterward, a (d + 1)-dimension distributed range
tree is built open this augmented point set Pσ, just like
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the one appeared in [2]. We only alter the query pro-
cedure to find the lowest rank point in the canonical
subset. This leads us to the following lemma:

Lemma 3 For a point set P ⊂ Rd, Next Tree can be
built in O(d) rounds, in O(s logd+1 n) time with size
O(n logd n).

A query to Next tree is an orthogonal cone σ(p). The
desired response is a point q where q′σ, the projection of
q on ℓσ, is the next projected point on ℓσ and q ∈ σ(p).

Lemma 4 In d-dimension Next Tree, the next query
can be answered in O(1) rounds and O(logd+1 n) time.

Proof. Without loss of generality consider a orthogonal
cone σ(p) = (x1, . . . , xd) which is open to (+∞,+∞).
Just like distributed range tree for each query, we must
go through the data structure. For each xi, where i ≤ d,
our search in Next Tree is a path with at most O(log n)
points. Just like lemma 3, we must repeat it for each d
level. However, at the d+1 level, we take aO(log n) path
just to find the minimum ranked point as the (d+ 1)th
coordinate of q is rank of qσ, which takes O(1) round
and O(logd+1 n) time for a single point. □

4 Spanner Construction

Briefly, the procedure of constructing the spanner is as
follows, as algorithm 1 specify, for each canonical cone
σ, we transform points and build a Next Tree. Then we
find the nearest point to each cone’s apex and connect
them.

Algorithm 1 Distributed algorithm to build a (1 +
ϵ)− spanner using θ-graph

Require: Point set P , ϵ, n nodes distributed arbitrary
1: Compute θ based on ϵ and canonical θ - cones C
2: for all σ in C do
3: transform and order points(σ, ℓσ)
4: Tσ = build next tree(σ)
5: find nearest(P, Tσ)

6: end for

Recall that for each 1 ≤ i ≤ n, σ(pi) is translated of
the same canonical cone σ ∈ C. Henceforth, we need to
project all points into ℓσ and also transform all points to
form all σ(pi) orthogonal. After that, we must compute
the rank of each projected point on ℓσ which can be
done in a constant rounds for all points [14]. Hence the
following proposition is inferred:

Proposition 5 In algorithm 1, the procedure trans-

form and order points project the points onto ℓσ and
rank them in O(1) rounds and Õ(S) time.

Now we must show how find nearest works in par-
allel for all points. If we want to find the nearest point
one by one it takes O(n) rounds to build the spanner
which is unacceptable in our model.

By lemma 4, it is clear that query one point in the
Next Tree requires O(1) rounds of computation. How-
ever, we design an algorithm to find the next point, the
adjacent vertex in the desired spanner, for all points in
constant rounds. To this end, we must be able to initi-
ate the search procedure locally for all machines. Hence,
each machine needs to have the top sub-tree or the mas-
ter node which contains the top O(S1/5) nodes [2]. This
can be done on logS1/5 n = O(1) rounds of computation
using the broadcast tree [14]. Afterward, in each ma-
chine Mi, s points have been searched and in the next
step their search procedure must continue among set
Mi = {M1, . . . ,Ms}. As a result, we can imagine some
cases in which a machine is overwhelmed by Ω(S) nodes
to resume its search procedure. To resolve this problem,
at the end of the first searching round, each machine
sends the number of applicant nodes to their destina-
tion machine say Mi. As each machine sends a number
to Mi, if the sum of these numbers exceeds S, Mi should
make a copy of its self and inform nodes about the new
destinations. Mi choose these machines randomly. Also
it sends the number of required machines, so using the
broadcast tree, we can handle the distribution. The fol-
lowing lemma shows us that this procedure (algorithm
2) can be done on constant rounds of computation.

Lemma 6 Targeted sub-trees to resume the query pro-
cedure to find neighbour of the point subject to a cone σ
can be redistributed to be able to host all requests at a
round, with O(1) rounds of computation and O(S) time.

Proof. Notice that, the total number of points is n and
also a machine requires another helping machine for ev-
ery O(S) applicant point. As S ≥ s = n/M , where s is
the number of points hosted by each machine, the to-
tal number of sub-trees to redistribute is less than M .
This is also an upper bound for redistributing a fixed
sub-tree. Again using the broadcast tree to distribute
the sub-trees. A machine with exceeded query requests
should choose uniformly at random max (S, r/S) ma-
chines, where r is the number of arriving requests. Us-
ing the broadcast tree this will end up in the constant
round. However, if a machine receives more nodes than
its memory size, it should drop extra sub-trees. So, we
consider Xi the number of guest sub-trees requested to
join Mi. As E[Xi] = 1 we can use chernoff bound:

Pr[Xi ≥ log n] ≤ exp(
− log2 n

3
) ≤ 1

n2

Using union bound, the probability of no machine re-
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ceive more than O(log n) nodes is:

Pr[X1 ∪ · · · ∪XM ] ≤
M∑

1

1

n2
=

M

n2
≤ 1

n

So, with high probability, no machine receives more
than log n nodes. Using the fact that S = Õ(nδ), the
lemma concludes. □

Algorithm 2 find nearest(P, Tσ)

Require: Point set P and its projection on ℓσ within,
Pre-computed and stored Tσ, Constant k =
logS1/5 n = O(1)

1: Distribute the master node to all machines and set
as current searching node Mi on each machine

2: for k times do
3: Perform the search on Mi locally and find the

Mi machine set to resume the search
4: Inform Mi members about the coming requests
5: Redistribute the machine Mi if necessary
6: end for

Using proposition 5 and lemma 3, we conclude that
the first two lines of the for loop in Algorithm 2 requires
O(1) rounds and Õ(S) time. Moreover, by lemmas 4
and 6 the find nearest procedure requiresO(1) rounds
and O(S) time. Assuming d and ϵ are constants leads
to the following theorem:

Theorem 7 In the MPC model, a geometric (1 + ϵ)-
spanner can be built using O(1) rounds of computation

and Õ(S) time.

5 Concluding Remarks

We considered constructing a geometric spanner in the
MPC model. Benefiting from θ-graph, we designed an
algorithm to build this spanner in constant rounds of
computation. However, we can consider the same prob-
lem to find a spanner with a smaller final degree. Also,
we can consider the problem in dynamic or kinetic mod-
els if we consider the possibility of temporal changes in
our point, with less work.
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Red Blue Set Cover Problem on Axis-Parallel Hyperplanes and Other
Objects

Abidha V P∗ Pradeesha Ashok

Abstract

In this paper we study the Red Blue Set Cover prob-
lem which is a bichromatic variant of the set cover prob-
lem. We prove that the Red Blue Set Cover prob-
lem is NP-hard even for red and blue points in IR2 and
set of axis parallel lines. We then study the parameter-
ized complexity of a generalization of this problem, for
points in IRd and a family of axis-parallel hyperplanes
in IRd, under different parameterizations. We further
consider the Red Blue Set Cover problem for some
special types of rectangles in IR2.

1 Introduction

The Set Cover problem and its variants are well stud-
ied in Computer Science [2]. Given a universe U with n
elements and a family F of subsets of U , the minimum
Set Cover problem is to find a subset F ′ ⊆ F that
covers all elements in U and |F ′| is minimized. Here
u ∈ U is said to be covered by F ′, if ∃F ∈ F ′ such that
u ∈ F .

In this paper, we study a generalization of the Set
Cover problem, where U is bi-chromatic. Given a uni-
verse U = R∪B of a finite set R of red elements, and a
finite set B of blue elements and a family F of subsets
of U , the Red Blue Set Cover (RBSC) problem is
to find a subset F ′ of F that covers all blue points of B
and the minimum number of red points from R. Here,
R and B are points in IRd. The sets in F correspond to
maximal subset of points contained in geometric objects
of a certain type. Note that the number of sets in F ′ is
not optimized. The minimum Set Cover problem can
be considered as a special case of the RBSC problem
where every set contains a distinct red element.

The RBSC problem was introduced by Carr et al. [3]
in 2000, motivated by applications in data mining. Ge-
ometric variants of the RBSC problem are also stud-
ied. Approximation algorithms for different geometric
RBSC problems are given in [4, 8].

The geometric RBSC problem is also studied in the
context of Parameterized complexity. Ashok et al.[1] in-
vestigate parameterized algorithms on general lines and

∗International Institute of Information Technology Bangalore,
India. abidha.vp@iiitb.ac.in, pradeesha@iiitb.ac.in

hyperplanes under an array of parameters and all pos-
sible combinations of those parameters.

1.1 Problems studied and results

We study the decision variant of a geometric version of
the RBSC problem where given R∪B, and F ⊆ 2U and
kr ∈ N, our objective is to decide if there exists F ′ ⊆ F
that covers all points in B and at most kr points from
R.

Theorem 1 (*) The RBSC problem on axis-
parallel lines is NP-complete.1

We study the following variants of the RBSC problem.

AxRBSC-hyperplane: We study the RBSC problem
for a generalization of lines to d dimension. We consider
the problem where U is a set of points in Rd and F is
defined by a set of axis-parallel hyperplanes. This prob-
lem is NP-hard by theorem 1. We study the parameter-
ized complexity of AxRBSC-hyperplane under dif-
ferent parameterizations. For each parameter, we con-
sider whether the problem is fixed parameter tractable
and if yes, we investigate whether the problem admits
polynomial kernels. We show that the RBSC problem
admits more positive results when restricted to axis-
parallel hyperplanes as compared to hyperplanes of any
orientation.
AxRBSC-skylines: Bi-directional strips are either of
the form [a, b] × (−∞,∞) or (−∞,∞) × [a, b]. Note
that axis-parallel lines is a special case of bi-directional
strips and hence the RBSC problem on bi-directional
strips is NP-Hard. We study the RBSC problem on
skylines which are rectangles of the form [a, b]× (−∞, c]
or (−∞, c] × [a, b] (referred to as AxRBSC-skylines)
and show that this problem is W[1]-hard and therefore
unlikely to admit FPT algorithms.
AxRBSC-quadrants: We further consider quadrants,
a special case of skylines. Quadrants are axis-parallel
rectangles of the form [a, b]× (+∞,+∞). We show that
the RBSC on quadrants is polynomial time solvable.

1The proofs of the results marked with a star are in the full
version of the paper.
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1.2 Preliminaries

In this paper, we study the parameterized complexity
of the problems using different parameters. Here we

aim to solve the problems in f(k) · |n|O(1)
time, for

some computable function f and k << n. For detailed
reading of parameterized complexity, refer to [5].

Notations: Let P = R ∪ B be a point set, where R is
a set of r red points and B is a set of b blue points and
|R|+ |B| = n. For any point p, let x(p) and y(p) denote
the x and y coordinate values of p respectively. Let [d]
be the set, {1, 2, · · · , d}.
We use the following reduction rules exhaustively on
any instance of the RBSC problem in multiple sections
throughout the paper.

Reduction rule 1 If a blue point b is contained in
only one set S ∈ F , then delete S from F , S ∩ B from
B and S ∩R from R, set kr = kr − |S ∩R|.
Reduction rule 2 If a set S contains only red points,
then delete S.
Reduction rule 3 If a set S contains only blue points,
then delete S from F and S ∩B from B.
Reduction rule 4 If a set S contains more than kr
red points, then delete S from F .

2 RBSC on Axis-parallel hyperplanes

Parameterizing by kr: In this section, we consider
AxRBSC-hyperplane parameterized by kr. Let (R∪
B,H, kr) be an instance of AxRBSC-hyperplane pa-
rameterized by kr.

After applying reduction rules 1, 2 and 3 on (R ∪
B,H, kr), every hyperplane contains at least one red
point and at least one blue point. Every blue point is
covered by at most d hyperplanes. There is a branching
algorithm that can solve this problem in FPT time. For
a blue point, we can branch on the hyperplane that
covers it in the solution (if it exists). On every branch,
the budget kr drops by at least one, thus giving us an
algorithm that runs in O(dkr ) time. The next result
improves this running time.

Theorem 2 The problem AxRBSC-hyperplane in
IRd can be solved in time O(cd

kr .nO(1)) where cd =
d−1+

√
(d−1)2+4

2 .

Proof. Here, we consider different cases. One case is
when every hyperplane contains exactly one red point.
We observe that this case can be reduced to the d-
Hitting Set problem parameterized by the solution
size. Let (R ∪ B,H, kr) be an instance of AxRBSC-
hyperplane such that every H ∈ H contains ex-
actly one red point from R. We construct an instance
(U,F , k) of d-Hitting Set with U = R, k = kr and F

contains sets corresponding to every blue point, where
a set corresponding to a blue point b contains all the
red points contained in the at most d hyperplanes that
contain b. It is easy to see that (R ∪B,H, kr) is a YES
instance if and only if (U,F , k) is a YES instance.

Our branching algorithm considers a blue point b such
that at least one hyperplane that contains b has two
red points and branches on the hyperplane that covers
b in the solution. Thus, kr drops by at least 2 in at
least one branch and drops by at least one in all other
branches. This gives us a branching algorithm that runs

in O(cd
kr .nO(1)) time where cd =

d−1+
√

(d−1)2+4

2 . If the
instance does not contain such a blue point, then the
algorithm converts this to a d-Hitting Set instance.
d-Hitting Set admits a branching algorithm that runs
in O(cd

k.nO(1)) time [7].
�

Corollary 3 The RBSC problem on AxRBSC-
hyperplane in IRd is FPT parameterized by kr + d.

Polynomial Kernels: We apply the following set of
reduction rules for all j = 1 to d − 1 exhaustively. For
2 ≤ j ≤ d−1, we apply the reduction rule corresponding
to j only when reduction rule corresponding to (j − 1)
is not applicable. For a point p ∈ Rd, xi(p) denotes the
value of the ith coordinate of p, for 1 ≤ i ≤ d.

Reduction rule 5 Repeat for all d′ ⊂ [d] such that
|d′| = d− j.
Let B′ ⊆ B be such that for all p, q ∈ B′, xi(p) = xi(q)
if i ∈ d′. If |B′| > j!(kr)j then delete all but j! · kjr + 1
points of B′.

Lemma 4 (*) Reduction rule 5 is safe.

Theorem 5 AxRBSC-hyperplane admits a kernel
(R ∪ B,H) with |B| ≤ d!kdr , |R| ≤ d · d! · kd+1

r ,
|H| ≤ d · d!kdr .

Proof. Let (R∪B,H, kr) be an instance of AxRBSC-
hyperplane such that none of the reduction rules are
applicable. Then, if it is a YES instance, all the points in
B can be covered by at most kr.d hyperplanes. Any hy-

perplane can contain at most (d−1)!k
(d−1)
r blue points,

otherwise Reduction Rule 5.(d−1) can be applied. Thus
a YES instance can have at most d!kdr blue points.

Every hyperplane in H contains at least one blue
point and any blue point is contained in at most d hy-
perplanes. Therefore, |H| ≤ d.d!kdr . By Reduction Rule
4, a hyperplane contains at most kr red points. Thus
|R| ≤ d.d!.kd+1

r .
�

Parameterizing by b: Since every blue point is con-
tained in at most d hyperplanes, the next result is easy
to see.
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Lemma 6 The AxRBSC-hyperplane problem pa-
rameterized by b can be solved in time O(db.nO(1)).

Theorem 7 The AxRBSC-hyperplane problem pa-
rameterized by b admits a polynomial kernel.

Proof. Since, we cannot apply reduction rules anymore
on (R ∪ B,H, kr), every hyperplane contains at least
one blue point. One blue point is covered by at most
d-hyperplanes. Then the number of hyperplanes H is at
most db. To bound the number of red points we reduce
our AxRBSC-hyperplane instance to a Weighted
AxRBSC-hyperplane instance as follows:

The family of hyperplanes and the set of blue points
remain the same as in the reduced instance. Let Rd ⊂ R
be the set of red points that lie in the intersection of d
hyperplanes in H. For all r ∈ Rd, assign w(r) = 1.
Since any d hyperplanes in Rd intersect at a point,
|Rd| ≤ hd. For i = 1 to d − 1, we perform the re-
duction as follows. For all sets of i hyperplanes in H,
say, Hi = {h1, h2, . . . , hi}, consider the set of red points
that is contained in all hyperplanes of Hi and no other
hyperplane in H. In the reduced instance, delete all but
one of these red points and assign a weight equal to the
number of deleted points +1.

It easy to see that AxRBSC-hyperplane has a so-
lution of size k if and only if WEIGHTED AxRBSC-
hyperplane has a solution of total weight k.

In the reduced instance, the number of red points
that lie in the intersection of exactly i hyperplanes is
O(hi). Therefore the total number of red points in the
reduced instance is O(hd + hd−1 + hd−2 + · · · + h) =
O(hd) = O((db)d). Now we bound the weight of each
red point in the reduced instance. By Reduction rule
4, all hyperplanes in H contain at most kr red points.
Therefore, the weight of any red point is at most kr. We
see that we need at most h bits to encode the weight of
a red point. If not, kr > 2h. Note that there exists a
brute force algorithm that solves the problem in O(2h)
time. If 2h < kr, this is a polynomial time algorithm.
Hence it follows that the weight can be encoded using
h ≤ db bits. Hence the size of the reduced instance is
O((db)d+1).

There exists a polynomial-time many-one reduction
from WeightedAxRBSC-hyperplane to AxRBSC-
hyperplane[1]. Thus, we obtain a polynomial-size ker-
nel for AxRBSC-hyperplane parameterized by b.

�

Parameterizing by h: We design a parameterized al-
gorithm and a kernel for AxRBSC-hyperplane when
parameterized by the number of hyperplanes, h. We
enumerate all possible subsets of H and for each subset,
we check in polynomial time whether it covers all blue
points and at most kr red points. The algorithm runs
in time O(2h(|U |+ |F |).

To bound the number of blue points, we use the fol-
lowing reduction rule. We apply the following set of
reduction rules for all j = 1 to d − 1 exhaustively. For
2 ≤ j ≤ d−1, we apply the reduction rule corresponding
to δ only when reduction rule corresponding to (j − 1)

is not applicable. Let Aj =

j∑

i=0

hi.

Reduction rule 6 Repeat for all d′ ⊂ [d] such that
|d′| = d− j.
Let B′ ⊆ B such that for all p, q ∈ B′, xi(p) = xi(q) if
i ∈ d′. If |B′| > Aj then delete all but Aj + 1 points of
B′.

Lemma 8 (*) Reduction rule 6 is safe.

Exhaustive application of the reduction rule 6 gives
an equivalent instance of the problem. Now the next
theorem follows.

Theorem 9 (*) The AxRBSC-hyperplane parame-
terized by h admits a polynomial kernel.

3 Red Blue Set Cover on Skylines

Given P = R∪B in the plane and K, a set of m bidirec-
tional skylines, We prove that, AxRBSC-skylines pa-
rameterized by kr is W[1]-hard by giving a parameter-
ized reduction from the Square Stabbing problem.
Rectangle Stabbing : Given a set S of n rectangles
and a set of axis-parallel lines L, the Rectangle Stab-
bing problem is to decide whether there exists a subset
L′ ⊆ L with |L′| ≤ k such that every rectangle from S is
intersected (stabbed) by at least one line in L′. If all the
rectangles are unit squares it is the Square Stabbing
problem. Square Stabbing problem parameterized
by k is known to be W[1]-hard [6].

Let (S,L) be an instance of the Square Stabbing
problem. Let {l1, l2, ..ln} be the set of vertical lines in L
which are in non-decreasing order of their x-coordinates
and let {h1, h2, ..hn} be the set of horizontal lines in L
which are in non-increasing order of their y-coordinates.
For every square S ∈ S, add a blue point bS to P at
the top-left corner of S. For every vertical line li, we
add a unit width vertical skyline Sli with its right edge
coinciding with the given line li. The top edge of the
leftmost vertical skyline Sl1 is unit distance above the
topmost point in P . For i > 1, the top edge of the
skyline Sli is unit vertical distance away from the top
edge of Sli−1

. Similarly for all horizontal lines, we add
a unit width horizontal skyline Shi

whose bottom edge
coincides with the line hi. The right edge of the topmost
horizontal skyline Sh1

is a unit distance away from the
rightmost point in P . The right edge of Shi is unit
horizontal distance away from the Shi−1 , for i > 1. For
every horizontal skyline, add a red point to P in the top-
right corner of the skyline and for every vertical skyline,
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add a red point to P in the top-left corner of the skyline.
Thus every skyline has a unique red point.

Lemma 10 (*) < S,L > can be stabbed using k lines
if and only if < P,K > has a solution of size k.

Theorem 11 The RBSC problem on bidirectional sky-
lines is W[1]-hard parameterized by the solution size.

This implies that RBSC problem on axis parallel
rectangles is W[1]-hard parameterized by the solution
size k.

4 Quadrants

In this section, we give a polynomial time algorithm to
optimally solve the AxRBSC-quadrants problem.
Given a universe U = R ∪ B and a family Q1 of quad-
rants, find the subfamily Q′1 that covers all points from
B and minimum possible number of red points from R.

Observation 12 Let qi and qj be two nested quadrants
i.e., (qi ∩ B) ⊆ (qj ∩ B) and (qi ∩ R) ⊆ (qj ∩ R) .
Then both q1 and q2 together are not part of an optimal
solution of AxRBSC-quadrants.

Theorem 13 For a given bichromatic point set with
n points, RBSC using quadrants can be computed in
O(mn2) time.

Proof. Let O be the orthogonal convexhull of B. Con-
sider the left-bottom chain, Plb, of O i.e., the chain of
O that extends from the blue point with the minimum
x-coordinate to the blue point with the minimum y-
coordinate, in the anti-clockwise direction. Let B′ =
{b1, b2, · · · bl} be the set of blue points on Plb ordered by
increasing x-coordinate. Note that this is also an order
of decreasing y-coordinate. Let R′ ⊆ R and B′′ ⊆ B\B′
respectively be the set of red and blue points that lie
on the right side of Plb. Any set of quadrants that
cover all points in B′ will cover all points in B′′ and
R′. Therefore it is enough to consider the AxRBSC-
quadrants problem for (R = (R\R′)∪(B = B′),Q1).

For this reduced instance (R ∪ B,Q1), we introduce
the following notations. Let π : R ∪ B 7−→ [n] be the
bijection corresponding to the ordering of the points in
R∪B by increasing x coordinates and σ : R∪B 7−→ [n]
be the bijection corresponding to the ordering of the
points in R ∪ B by decreasing y coordinates. For any
Q ∈ Q1, let p ∈ Q∩(R∪B) be the point with smallest x
coordinate in Q and let q ∈ Q∩(R∪B) be the point with
the smallest y coordinate in Q. Define left(Q) = π[p]
and bottom(Q) = σ(q). Let Bi = {b ∈ B|σ(b) > i},
Ri = {r ∈ R|σ(r) > i} and Qj = {Q ∈ Q1|left(Q) >
j}.

Now we give a dynamic programming algorithm to
solve the AxRBSC-quadrantsproblem for this in-
stance.

Let dp[i, j] returns the minimum number of red points
from Ri, that is covered by a subset of Qj that covers all
points in Bi. Then dp[ ] can be given as follows. Here
b′ is the blue point with the smallest σ(b′) value in Bi.

dp[i, j] = min
Q∈Qj ,b′∈Q

{
dp[bottom(Q), left(Q)] + |Q∩Ri|}

(1)
To see the correctness of the above, observe that the
recurrence considers all Q ∈ Qj to cover b′. For the
correct guess, the rest of the solution only covers un-
covered red points from Rbottom(Q) using Q ∈ Qleft(Q) .
Otherwise, if a Q /∈ Qleft(Q) is part of the solution then
it contradicts Observation 12. Similarly an uncovered
red point outside Rbottom(Q) is not part of an optimal
solution.

It is clear that computing the value of one DP table
entry takes O(m) time. The number of dp[∗, ∗] values
to be computed is clearly O(n2) time. We can con-
struct and verify the orthogonal path in O(n log n) time.
Therefore, the algorithm runs in O(mn2) time.

�
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Angle-Monotonicity of theta-graphs for points in convex position

Davood Bakhshesh∗ Mohammad Farshi†

Abstract

For a real number 0 < γ < 180◦, a geometric path
P = (p1, . . . , pn) is called angle-monotone with width γ
from p1 to pn if there exists a closed wedge of angle γ
such that every directed edge −−−−→pipi+1 of P lies inside the
wedge whose apex is pi. A geometric graph G is called
angle-monotone with width γ if for any two vertices p
and q in G, there exists an angle-monotone path with
width γ from p to q. In this paper, we show that for
any integer k ≥ 1 and any i ∈ {2, 3, 4, 5}, the theta-
graph Θ4k+i on a set of points in convex position is
angle-monotone with width 90◦ + iθ

4 , where θ = 360◦

4k+i .
Moreover, we present two sets of points in the plane, one
in convex position and the other in non-convex position,
to show that for every 0 < γ < 180◦, the graph Θ4 is
not angle-monotone with width γ.

1 Introduction

Let S be a set of points in the plane. For two points
p, q ∈ S, the Euclidean distance between p and q is
denoted by |pq|. A geometric graph G = (S,E) is
a weighted graph such that any edge (x, y) of G is a
straight-line segment between x and y and the weight of
(x, y) is |xy|. The length of a path P = (p1, p2, . . . , pr)
between p1 and pr in G is denoted by |P |, and it is

defined as |P | =
∑r−1
i=1 |pipi+1|. For any two points

p, q ∈ S, the stretch factor (or dilation) between p and
q in a geometric graph G is the ratio of the length of
a shortest path between p and q in G over |pq|. The
stretch factor of a geometric graph G is the maximum
stretch factor between all pairs of vertices of G.

Let t > 1 be a real number. A geometric graph G is
called a t-spanner if the stretch factor of G is at most
t. In Computational Geometry, constructing the ge-
ometric graphs with low stretch factor, small number
of edges (small size) and low weight is an important
problem. We refer the reader to the book [9] to study
t-spanners and their algorithms.

Let θ > 0 be a real number. In [6], Dehkordi et al.,
introduced θ-paths. Let W θ

p be a 90◦ closed wedge de-
limited by the rays starting at p with the slopes θ− 45◦

and θ+ 45◦. A path (p1, p2, . . . , pn) is called a θ-path if

∗Department of Computer Science, University of Bojnord, Bo-
jnord, Iran. d.bakhshesh@ub.ac.ir
†Department of Mathematical Sciences, Yazd University,

Yazd, Iran. mfarshi@yazd.ac.ir

for every integer i with 1 ≤ i ≤ n− 1, the vector −−−−→pipi+1

lies in the wedge W θ
pi . Using the concept of θ-paths,

Bonichon et al. [3] introduced angle-monotone graphs.
A geometric graph G = (S,E) is called angle-monotone
if for any two points u, v ∈ S, there is a real number
θ > 0 such that G contains a θ-path between u and
v. Bonichon et al. [3] generalized the concept of angle-
monotone graphs to angle-monotone graphs with width
γ. Let γ be a real number with 0 < γ < 180◦. A geo-
metric path P = (p1, . . . , pn) is called angle-monotone
with width γ from p1 to pn if for some closed wedge
of angle γ, every vector −−−−→pipi+1 lies in the wedge whose
apex is pi (see Figure 1).

x

y

145◦

145◦

145◦

145◦

Figure 1: An angle-monotone path between x and y
with width γ = 145◦.

A geometric graph G is called angle-monotone with
width γ if for any vertex p of G, there is an angle-
monotone path with width γ from p to all other vertices
of G. It is remarkable that if a path is angle-monotone
with width γ from x to y, then the path is also angle-
monotone with width γ from y to x.

In [6], Dehkordi et al. show that any Gabriel triangu-
lation is an angle-monotone graph with width 90◦. In
[8], Lubiw and Mondal show that for any set of points in
the plane, there is an angle-monotone graph with width
90◦ with a subquadratic size. Furthermore, they showed
that for any angle β with 0 < β < 45◦, and for any
set of points in the plane, there is an angle-monotone
graph with width (90◦ + β) of size O(nβ ). Bakhshesh

and Farshi [1] present a point set in the plane such that
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its Delaunay triangulation is not angle-monotone with
width less than 140◦. Bakhshesh and Farshi [2] prove
that the minimum value of an angle γ such that for
any set of points in the plane there is a plane angle-
monotone graph with width γ is equal to 120◦.

One of the most popular graphs in computational
geometry are theta-graphs which were introduced by
Clarkson [5] and independently by Keil [7]. Informally,
for every point set S in the plane and an integer m ≥ 2,
the theta-graph Θm is constructed by partitioning the
plane into m cones at each point p ∈ S, and joining
the closest point to p at each cone (in the next section,
closest will be defined). Bonichon et al. [3] proved that
for any set of points in the plane, half-Θ6-graph, a plane
subgraph of Θ6, whose edges are obtained by selecting
every other cone, i.e., alternate cones, is angle-monotone
with width 120◦. In [6], Dehkordi et al. prove that for
every set of n points in the plane that are in convex
position, there exists an angle-monotone graph (angle-
monotone graph with width 90◦) with O(n log n) edges.
To the best of our knowledge, it is unknown if the theta-
graphs except Θ6 are angle-monotone with a constant
width.

In this paper, we show that for any set of points
in convex position, and any integer k ≥ 1 and any
i ∈ {2, 3, 4, 5}, the theta-graph Θ4k+i is angle-monotone
with width 90◦ + iθ

4 , where θ = 360◦

4k+i . Moreover, we
present two sets of points in the plane, one in convex
position and the other in non-convex position, to show
that for every 0 < γ < 180◦, the graph Θ4 is not angle-
monotone with width γ.

2 Preliminaries

Let m ≥ 3 be an integer, and let θ = 2π
m be a real

number. For any integer i with 0 ≤ i < m and a point p
in the plane, letRpi be the ray emanating from p making
the angle θ × i = 2πi/m with the positive x-axis (the
angles are considered in counter-clockwise). Let Cpi be
the cone which is constructed by the rays Rpi and Rpi+1.
Note that we assume that Rpm = Rp0. For a point r and
a cone Cpi , we say Cpi contains r (or, r ∈ Cpi ) if r lies
strictly between Rpi and Rpi+1, or lies on Rpi+1. If r lies
on Rpi , then r 6∈ Cpi . For a point set S, the theta-graph
Θm is constructed as follows. For each point p ∈ S,
we partition the plane into m cones Cp0 , C

p
1 , . . . , C

p
m−1

(see Figure 2). Then, for each cone Cpi containing at
least one point of S other than p, let ri ∈ Cpi be a point
such that |pr′i| is minimum where r′i is the perpendicular
projection of ri onto the bisector of Cpi . Then, we add
the edge (p, ri) to the graph. We assume that a pair
(a, b) is a directed edge. We call the point r the closest
point to p in Cpi . For a point q ∈ Cpi , the canonical
triangle Tpq is the isosceles triangle which is constructed
by the rays of Cpi and the line through q perpendicular

p

Cp
0

Cp
1

Cp
m−1

Cp
m−2

Figure 2: Partition the plane into m = 18 cones with
apex at p.

to the bisector of Cpi . For more details on theta-graphs,
see [9].

Let S be a set of n ≥ 3 points in the plane that are
in convex position. In the following, when we use the
notation G, we mean one of the graphs Θ4k+2, Θ4k+3,
Θ4k+4 and Θ4k+5. Throughout the paper, we assume
that p and q are two distinct points in S and suppose,
without loss of generality, that q ∈ Cp0 . Let WO be the
wedge with apex at the origin O that is the union of
all cones COt with

⌈
m−1

4

⌉
≤ t ≤

⌈
m−2

2

⌉
. Let W ′O be

the reflection of WO with respect to the point O. Now,
let UO be a wedge with apex at the origin O such that
UO =W ′O ∪ CO0 (see Figure 3).

WO

m = 4k + 2

WO

m = 4k + 3

WO

m = 4k + 4

WO

m = 4k + 5

UO
UO

UO UO

O O

OO

Figure 3: The wedges WO and UO for the different val-
ues of m.
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3 Angle-monotonicity of theta-graphs

In this section, we show that for any integer k ≥ 1
and any i ∈ {2, 3, 4, 5}, the theta-graph Θ4k+i is angle-
monotone with width 90◦ + iθ

4 . To this end, we show
that there is an angle-monotone path between p and q
in G with width 90◦ + iθ

4 . Let P = (p = v0, v1, . . . , vl)
be the directed path in G such that vi+1 ∈ Cvi0 is the
closest point to vi, and vl is the last vertex of the path
P that lies in Tpq. Let P̈ be the directed path which
is obtained by reversing the direction of all edges of
P . If vl = q, then obviously P is an angle-monotone
path from p to q with width θ. Then, we are done.
Now, in what follows, we assume that vl 6= q. Suppose,
without loss of generality, that q is below P ∪ Cvl0 (see
Figure 4). Let Q = (q = a0, a1 . . . , ag = vl) be the

p

q

vl

P

Figure 4: The path P .

path constructed by the algorithm Θ-Walk(q, vl) (see
Algorithm 1). The path Q is a path between q and vl
in G such that for any ai there exists a cone Caij such
that vl ∈ Caij and (ai, ai+1) is an edge of G.

Algorithm 1: Θ-Walk(a, b) (see [9])

output: A path between a and b in theta-graphs
1 a0 = a;
2 i := 0;
3 while ai 6= b do
4 s := an integer such that b ∈ Cais ;
5 ai+1 := a point of Cais ∩ S\{ai} such that

(ai.ai+1) is an edge of Θk;
6 i := i+ 1;

7 end
8 return the path (a0, a1, . . ., ai);

3.1 The graphs Θ4k+2 and Θ4k+4

We first prove the following lemma.

Lemma 1 If G = Θ4k+2, then every edge (ai, ai+1) of
the path Q lies in the wedge Wai .

Proof. Let `1 be the horizontal line passing through
vl, and `2 be the line passing through vl that forms an

angle θ with the positive x-axis. Let c1 and c2 be the
intersection of `1 and `2 with the sides of the triangle
Tpq which are incident to p (see Figure 5). Based on

vl

q

`1

`2 c2

c1

p

d1

d2

y

x

Figure 5: Illustrating the proof of Lemma 1.

the construction of the path P , the vertex vl−1 lies in
the quadrilateral pc1vlc2. Let j be an integer such that
q ∈ Cvlj . Since we assume that q is below P ∪ Cvl0 , we
have 3k + 2 ≤ j ≤ 4k + 1. Since q ∈ Cvlj , we have
vl ∈ Cqj−(2k+1). Consider the triangle Tqvl . Let x and y

be the two other vertices of Tqvl as depicted in Figure 5.
Let d1 6= vl be the intersection of `1 and Tqvl , and let
d2 6= vl be the intersection of `2 and Tqvl . It is notable
that it is possible that the segment xy completely lies
on the line `2. In this case, we assume that d2 = y.
Now, if any vertex u of the path Q lies in the triangle
4vlyd2, since vl−1 lies in the quadrilateral pc1vlc2, the
triangle quvl−1 contains the vertex vl that contradicts
the convexity of the points. Hence, no vertices of Q lie
in the triangle 4vlyd2. By similar reasons, no vertices
of Q lie in the triangle 4qvlp. Since Cvl0 ∩ Tpq does not
contain any point of S, the path Q completely lies in
the triangle 4qd1vl. Then, for any edge (ai, ai+1) of Q,
there is an integer t with j−(2k+1) ≤ t ≤ 2k such that
ai+1 ∈ Cait . Since 3k+ 2 ≤ j ≤ 4k+ 1, clearly (ai, ai+1)
lies in the wedge Wai . �

Now, we have the following lemma.

Lemma 2 If G = Θ4k+2, then every edge (x, y) of the
path P ∪ Q̈ lies in the wedge Ux.

Proof. By Lemma 1, every edge (a, b) of Q lies in the
wedge Wa. Therefore, every edge (b, a) of Q̈ lies in the
wedge W ′b. On the other hand, every edge (vi, vi+1) of
P lies in the cone Cvi0 . Since UO = W ′O ∪ CO0 , every
edge (x, y) of the path P ∪ Q̈ lies in the wedge Ux. �

Theorem 3 For any set S of points in the plane that
are in convex position and for any integer k ≥ 1, the
graph G = Θ4k+2 is angle-monotone with width 90◦+ θ

2 .

Proof. Consider the points p and q. By Lemma 2, ev-
ery edge (x, y) of the path P ∪ Q̈ lies in the wedge Ux.
Therefore, the path P ∪ Q̈ is an angle-monotone path
from p to q in G with width kθ + θ. Note that for
G = Θ4k+2, the angle of the wedge Ux is kθ + θ. Since

13
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θ = 360◦

4k+2 , we have kθ+θ = 90◦− θ
2 +θ = 90◦+ θ

2 . Hence,

P ∪ Q̈ is an angle-monotone path with width 90◦ + θ
2 .

This completes the proof. �

Similar to the proof of Theorem 3, for G = Θ4k+4 with
k ≥ 1, we can prove that the path P ∪ Q̈ is an angle-
monotone path from p to q with width (k + 1)θ + θ =
90◦ + θ. Note that for G = Θ4k+4, the angle of the
wedge Ux is (k + 1)θ + θ. Hence, we have the following
theorem.

Theorem 4 For any set S of points in the plane that
are in convex position and for any integer k ≥ 1, the
graph G = Θ4k+4 is angle-monotone with width 90◦+θ.

In [3], Bonichon et al., show that any angle-monotone
graph with width γ < 180◦ is a t-spanner with t =
1/ cos γ2 . Hence, we have the following result.

Corollary 1 For any set of points in the plane that
are in convex position and for any integer k ≥ 1, the
graphs Θ4k+2 and Θ4k+4 have the stretch factor at most
1/cos

(
π
4 + θ

4

)
and 1/cos

(
π
4 + θ

2

)
, respectively.

3.2 The graphs Θ4k+3 and Θ4k+5

We first assume that G = Θ4k+3. Here, we present an
algorithm that finds an angle-monotone path P between
p and q in G with a constant width. The algorithm is
as follows. It first finds the path P = (p = v0, . . . , vl)
which was introduced earlier. If vl = q, then clearly
P = P is an angle-monotone path with width θ, and we
are done. Now, in the following we assume that vl 6= q.
Let a be the topmost vertex of the triangle Tpq and let
b 6= p be the other vertex of Tpq. Let m be the midpoint
of ab. The algorithm considers the following cases.

• Case 1: q lies on the segment am. Now, let
Q = (q = a0, . . . , vl) be the path constructed by
the algorithm Θ-Walk(q, vl). Then, the algorithm
outputs the path P = P ∪ Q̈.

• Case 2: q lies on the segment bm. Let P ′ = (q =
u0, . . . , us) be the path in G such that ui+1 ∈ Cui

2k+1

and ui+1 is the closest point to ui, and us is the last
vertex of the path P ′ that lies in Tqp. Let b′ be the
topmost vertex of the triangle Tqp and let a′ be the
bottommost vertex of Tqp. Let m′ be the midpoint
of a′b′. Since q ∈ Cp0 , it is easy to see that p lies on
the segment a′m′. Now, there are two cases:

– (I): P and P ′ have a common vertex w. The
algorithm outputs the path R which is formed
by the portion of P from v0 to w followed by
the portion of P ′ from w to q.

– (II): P and P ′ do not have any common ver-
tex. Now, consider two following cases: (a):

there is a vertex g 6= q of the path P ′ be-
low the path P . (b): all vertices of P ′ are
above the path P . For the case (a), let uh
be the last vertex of P ′ below the path P
and let Q′ be the constructed path by the
algorithm Θ-Walk(p, uh). Then, the algo-
rithm outputs path P = P ′ ∪ Q̈′. For the
case (b), first the path Q = Θ-Walk(q, vl) is
constructed. Then, the algorithm outputs the
path P = P ∪ Q̈.

For more details, see Algorithm 2.

Algorithm 2: Angle-Monotone-Path-
Θ4k+3(p, q)
output: An angle-monotone path between p and q in Θ4k+3

1 P := ∅;
2 Compute the path P = (p = v0, . . . , vl);
3 if vl 6= q then
4 if q lies on the segment “am” then
5 Q := Θ-Walk(q, vl);

6 P := P ∪ Q̈;

7 end
8 else
9 Compute the path P ′ = (q = u0, . . . , us);

10 if P and P ′ have a common vertex w then
11 R := the path which is formed by the portion of P

from v0 to w followed by the portion of P ′ from w
to q;

12 P := R;

13 end
14 else
15 if there is a vertex g 6= q of the path P ′ below

the path P then
16 uh := the last vertex of P ′ below P ;

17 Q′ := Θ-Walk(p, uh);

18 P := P ′ ∪ Q̈′;
19 end
20 else
21 Q := Θ-Walk(q, vl);

22 P = P ∪ Q̈;

23 end

24 end

25 end

26 end
27 else
28 P := P ;
29 end
30 return P;

In the following, we show that the path P returned
by Algorithm 2 is an angle-monotone path between p
and q with width 90◦+ 3θ

4 . We first prove the following
lemma.

Lemma 5 If q lies on the segment am, then every edge
(ai, ai+1) of the path Q = (q = a0, . . . , vl) lies in the
wedge Wai .

Proof. Let j be an integer such that vl ∈ Cqj . Since we
assumed that q is below P ∪ Cvl0 , we have k + 1 ≤ j ≤
2k + 1. Consider the triangle Tqvl . Let x and y be the
two other vertices of Tqvl as depicted in Figure 6(a). It is
notable that the line passing through p and m is parallel
to the line passing through q and y. Then, since q lies on
the segment am, the point p is below the line passing

14
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through q and y. Hence, because of the convexity of
the points, no points of Q lie in the triangle 4qvly.
Consider the lines `1 and `2, and the points d1 and d2

p

a

b

m

qvl

x

y

`1

`2

d2 d1

(a) Illustrating the proof of Lemma 5.

p

a

b

m

quj
vi

vi+1

(b) Illustrating the proof of Lemma 8.

Figure 6: Illustrating the proofs of Lemma 5 and
Lemma 8.

as defined in the proof of Lemma 1. By the reasons
similar to the proof of Lemma 1, we can prove that the
path Q completely lies in the triangle 4qd1vl. Then,
for any edge (ai, ai+1) of Q, there is an integer t with
j ≤ t ≤ 2k+1 such that ai+1 ∈ Cait . Clearly, this shows
that (ai, ai+1) lies in the wedge Wai . �

Now, we prove the following lemma.

Lemma 6 If q lies on the segment bm, then every edge
(ri, ri+1) of the path R lies in the wedge Uri .

Proof. According to Algorithm 2, the path R is con-
structed when the paths P = (v1, . . . , vl) and P ′ =
(u1, . . . , us) have a common vertex. It is clear that for
every edge (vi, vi+1) of the path P , we have vi+1 ∈ Cvi0 ,
therefore (vi, vi+1) lies in the wedge Uvi . On the other
hand, for every edge (ui, ui+1) of P ′, we have ui+1 ∈
Cui

2k+1. Therefore, ui ∈ C
ui+1

4k+2 or ui ∈ C
ui+1

0 . Hence,
the edge (ui+1, ui) lies in the wedge Uui+1

. This com-
pletes the proof. �

Let YO be a wedge with YO =
(⋃4k+2

i=3k+2 C
O
i

)
∪
(
CO2k+1

)′

(
(
CO2k+1

)′
is the reflection of CO2k+1 with respect to the

origin O). It is clear that the angle of YO is equal to
(k + 1)θ + θ/2. Now, we prove the following lemma.

Lemma 7 If q lies on the segment bm and the paths P
and P ′ do not have any common vertex, and there is a
vertex g 6= q of the path P ′ below the path P , then every
edge (ci, ci+1) of the constructed path P by Algorithm 2
lies in the wedge Yci .

Proof. Le uh be the last vertex of P ′ below P . Accord-
ing Algorithm 2, P = P ′∪ Q̈′ that Q′ is the constructed
path by Θ-Walk(p, uh). It is clear that for every edge
(ui, ui+1) of P ′, we have ui+1 ∈ Cui

2k+1, and therefore

ui ∈
(
C
ui+1

2k+1

)′
. Hence, (ui+1, ui) lies in the wedge Yui+1 .

Let Q′ = (p = a′1, a
′
2, . . . , a

′
z = uh). We claim that ev-

ery edge (a′i, a
′
i+1) lies in the wedge Ya′i . Since p lies

on the segment a′m′, by the arguments similar to the
proof of Lemma 5, the claim is proved. These show that
if (ci, ci+1) be an edge of the path P, it lies in the wedge
Yci . �

Now, we have the following lemma.

Lemma 8 If q lies on the segment bm and the paths P
and P ′ do not have any common vertex, and there is no
vertex g 6= q of the path P ′ below the path P , then every
edge (ri, ri+1) of the constructed path P by Algorithm 2
lies in the wedge Uri .

Proof. Let uj be a vertex of P ′ above the path P .
Let vi be the last vertex of P to the left of uj (see
Figure 6(b)). Since p is to the left of uj , the vertex vi
always exist. Since there is no vertex g 6= q of the
path P ′ below the path P , we have uj−1 = q. Now,
consider the triangle Tvivi+1 . Since P and P ′ have no
common vertex, clearly uj 6∈ Tvivi+1

. Hence, if vi 6= p,
then the triangle 4pujvi+1 contains the vertex vi which
contradicts the convexity of the points. Then, vi = p.
On the other hand, since vl 6= q, we must have vi+1 6∈
Tquj , and therefore vl ∈ Cqt with k + 1 ≤ t < 2k + 1.
Now, by the arguments similar to the proof of Lemma 5,
we can prove that every edge (ai, ai+1) of the path Q
lies in the wedge Wai . Hence, it is clear that every
edge (ri, ri+1) of the path P = P ∪ Q̈ lies in the wedge
Uri . �

Based on Lemmas 5, 6, 7 and 8, any path constructed by
Algorithm 2 is angle-monotone with width (k+ 1)θ+ θ

2 .

Since θ = 360◦

4k+3 , we have (k+ 1)θ+ θ
2 = 90◦+ 3θ

4 . Then,
the following theorem holds.

Theorem 9 For any set S of points in the plane that
are in convex position and for any integer k ≥ 1, Θ4k+3

is angle-monotone with width 90◦ + 3θ
4 .

By the arguments similar to the proof of Theorem 9,
for G = Θ4k+5 with k ≥ 1, we can prove that the path
P is an angle-monotone path from p to q with width
(k + 1)θ + θ

2 . Since θ = 360◦

4k+1 , we have (k + 1)θ + θ
2 =

90◦ + 5θ
4 . Then, the following theorem holds.

Theorem 10 For any set S of points in the plane that
are in convex position and for any integer k ≥ 1, Θ4k+5

is angle-monotone with width 90◦ + 5θ
4 .

We close this section with the following result.
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Corollary 2 For any set of points in the plane that are
in convex position, the graphs Θ4k+3 and Θ4k+5 with
k ≥ 1 have the stretch factor at most 1/cos

(
π
4 + 3θ

8

)

and 1/cos
(
π
4 + 5θ

8

)
, respectively.

4 Theta-graph Θ4

In the following, we present two point sets, one in convex
position and the other in non-convex position, to show
that the graph Θ4 of the point set is not angle-monotone
for any width γ > 0. Let p0, p2, p3 and p5 be the
vertices of a rectangle with length 2 and width 1 + ε,
where ε > 0 is a small real number (see Figure 7(a)).
Let p1 and p4 be the midpoints of the segments p0p2

and p3p5, respectively. Now, let P = {p0, p1, . . . , p5}.

p0 p2

p3p5

p1

p4

1 + ε

11

1 1

(a) The point set P .

p0 p2

p3p5

p1

p4

p′0
p′2

p′3p′5

p′1

p′4

(b) The point set V = P ∪
P ′.

Figure 7: The point sets P and V .

Consider the theta-graph Θ4 on P . It is not hard to see
that the edge set E of Θ4 is

E = {(p0, p1), (p1, p2), (p2, p3), (p3, p4), (p4, p5), (p5, p0)}.

Now, since p0p2 and p3p5 are parallel, it is obvious that
for any 0 < γ < 180◦, any path between p1 and p4 is
not angle-monotone with width γ.

Let P ′ = {p′0, p′1, . . . , p′5} be a copy of point set P
such that the points of P ′ placed below the points of P
as depicted in Figure 7(b). Let V = P ∪ P ′. It is easy
to see that the edge set F of the theta-graph Θ4 on the
point set V is

F = E ∪ {(p′0, p′1), (p′1, p
′
2), (p′2, p

′
3), (p′3, p

′
4), (p′4, p

′
5), (p′5, p

′
0)}

∪ {(p′0, p5), (p′1, p4), (p′2, p3)}.

It is obvious that for any 0 < γ < 180◦, any path be-
tween p1 and p4 is not angle-monotone with width γ.
Now, we have the following theorem.

Theorem 11 For any angle 0 < γ < 180◦, the graph
Θ4 is not necessarily angle-monotone with width γ.

5 Remarks

In Corollaries 1 and 2, we examined the stretch
factor of the graphs Θ4k+2, Θ4k+3, Θ4k+4 and Θ4k+5

when the points placed in convex position. In [4],
Bose et al., show that the stretch factor of the
graphs Θ4k+2, Θ4k+3, Θ4k+4 and Θ4k+5 are at most
1 + 2 sin(θ/2), cos(θ/4)/ (cos(θ/2)− sin(3θ/4)),
1 + 2 sin(θ/2)/ (cos(θ/2)− sin(θ/2)) and
cos(θ/4)/ (cos(θ/2)− sin(3θ/4)), respectively.

a

b

c

d

Figure 8: The lower bound
for the width of Θ4k+2.

By comparing the
results of Corollar-
ies 1 and 2 with
the results in [4],
we find that the re-
sults of the corollar-
ies do not improve
the stretch factors
known in [4].

In the following,
we indicate whether
the bounds on the
width presented in Theorems 3, 4, 9 and 10 are tight
or not. Consider the graph Θ4k+2. Figure 8 shows that
the upper bound on the width presented in Theorems 3
is tight. We place a vertex c close to the lower corner
of Tab that is sufficiently far from the vertex b. We also
place a vertex d close to the upper corner of Tba that is
sufficiently far from the vertex a. Now, the graph Θ4k+2

of four points a, b, c and d is as shown in Figure 8. We
can easily see that each of the paths acb and adb are
angle-monotone with width 90◦ + θ

2 − ε, for some real
number ε > 0 that only depends on the distance be-
tween c (d) and the lower corner (upper corner) of Tab
(Tba). If ε approaches zero, then the width approaches
90◦ + θ

2 .

For Theorems 4, 9 and 10, we do not know whether
the bounds for the width is tight or not.

6 Conclusion

In this paper, we showed that for any set of points in
the plane that are in convex position and for any integer
k ≥ 1 and any i ∈ {2, 3, 4, 5}, the theta-graph Θ4k+i is
angle-monotone with width 90◦ + iθ

4 , where θ = 360◦

4k+i .
Moreover, we presented two sets of points in the plane,
one in convex position and the other in non-convex po-
sition, to show that for every 0 < γ < 180◦, the graph
Θ4 is not angle-monotone with width γ. It is notable
that our technique in Section 3.2, does not work for Θ5

because by the proposed technique, the resulting path P
is angle-monotone with width 90◦ + 5θ

4 . Since for Θ5,

we have θ = 2π
5 ≡ 72◦. Then, 90◦ + 5θ

4 = 180◦. We
conjecture for any set of points in convex position, Θ5

is angle-monotone with a constant width. We tried to
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prove our conjecture but we did not succeed. Finally,
we present the following conjecture.

Conjecture 1 For any set of points in the plane that
are not convex position, for any integer k ≥ 1 and any
i ∈ {2, 3, 4, 5}, the theta-graph Θ4k+i is angle-monotone
with width 90◦ + iθ

4 , where θ = 360◦

4k+i .
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Guarding Weakly-Visible Polygons with Half-Guards

Hannah Miller Hillberg∗ Erik Krohn† Alex Pahlow‡

Abstract

We consider a variant of the art gallery problem where
all guards are limited to seeing to the right inside a
weakly-visible polygon. Guards that can only see in
one direction are called half-guards. In this paper, we
give a polynomial time approximation scheme for vertex
guarding a weakly-visible polygon with half-guards. We
then show NP-hardness for vertex guarding a weakly-
visible polygon with half-guards.

1 Introduction

An instance of the original art gallery problem takes as
input a simple polygon P . A polygon P is defined by
a set of points V = {v1, v2, . . . , vn}. There are edges
connecting (vi, vi+1) where i = 1, 2, . . . , n− 1. There is
also an edge connecting (v1, vn). If these edges do not
intersect other than at adjacent points in V (or at v1
and vn), then P is called a simple polygon. The edges of
a simple polygon give us two regions: inside the polygon
and outside the polygon. For any two points p, q ∈ P ,
we say that p sees q if the line segment pq does not
go outside of P . The art gallery problem seeks to find
a guarding set of points G ⊆ P such that every point
p ∈ P is seen by a point in G. In this paper, we study
the vertex guarding problem which says that guards
are only allowed to be placed at the vertices V . The
optimization problem is defined as finding the smallest
such G.

1.1 Previous Work

There are many results about guarding art galleries.
Several results related to hardness and approximations
can be found in [1, 5, 6, 10].
Additional Structure. Due to the inherent difficulty
in fully understanding the art gallery problem for simple
polygons, there has been some work done guarding poly-
gons with additional structure, see [3, 8] for example. In
this paper we consider weakly-visible polygons that we
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Figure 1: A WV-polygon where p sees q and every point
in the polygon is seen by a point on e = [l, r] or sees a
point on e.

will describe below. Motivated by the fact that many
cameras/sensors cannot sense in 360°, referred to as full-
guards in this paper, we study guards that can sense in
180°, referred to as half-guards. We restrict the problem
even further by only allowing these half-guards to see to
the right. Even with these restrictions, the problem is
difficult to solve.

1.2 Definitions

A weakly-visible polygon (WV-polygon) P contains an
edge e = (l, r) such that every point in P sees at least
one point on edge e. The usual definition of sees says
that for any two points p and q inside of the polygon, if
the line segment connecting p and q does not go outside
of the polygon, then p sees q. Let p.x be the x-coordinate
for point p. In this paper, for a point p to see a point
q, it must be the case that p.x ≤ q.x, see Figure 1. The
definition of a WV-polygon is slightly modified to say
that it contains an edge e = (l, r) such that every point
in P sees (or is seen by) at least one point on edge e.

1.3 Our Contribution

NP-hardness has been shown for many variants of the
art gallery problem. In many of those reductions, guards
are allowed to see in all directions. If the problem is
restricted enough, it can become polynomially time solv-
able, for example, see [4, 9]. If the polygon is restricted
to be a WV-polygon, restrict guards to be at the vertices
and only allow them to see to the right, we show that
even with these many restrictions, the problem is still
NP-hard.
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Figure 2: A WV-polygon that requires Ω(n) half-guards
that see to the right.

Ashur et al. [2] give a polynomial time approximation
scheme (PTAS) for minimum dominating set in terrain-
like graphs, which we will describe later. They then show
that several families of polygons have a visibility graph
that is terrain-like. One such family is WV-polygons.
However, their analysis does not imply that the visibility
polygon of vertex guarding a WV-polygon with half-
guards is terrain-like. We provide additional observations
in this paper that show the visibility polygon is terrain-
like. There are WV-polygons P that can be completely
guarded with one full-guard but require Ω(n) half-guards
considered in this paper, see Figure 2.
The remainder of the paper is organized as follows.

Section 2 provides a PTAS for vertex guarding a WV-
polygon using half-guards. Section 3 shows NP-hardness
for vertex guarding a WV-polygon using half-guards.
Finally, Section 4 gives a conclusion and future work.

2 PTAS for Vertex Guarding a WV-Polygon with
Half-Guards

In this section, we show that the visibility graph of a WV-
polygon with half-guards is terrain-like. The visibility
graph is a graph G = (V,E) such that V corresponds to
vertices in the WV-polygon and the edges E correspond
to vertices that can be seen by other vertices. Then we
use Theorem 1 from [2], see Appendix, to show that a
PTAS exists for vertex guarding a WV-polygon with
half-guards.
Using the definition from [2], a graph G = (V,E) is

terrain-like if one can assign a unique integer from the
range [1, |V |], where |V | is the number of vertices in the
polygon, to each vertex in V , such that, if both (i, k)
and (j, l) are in E, for any i < j < k < l, then so is (i, l).
Much of the proof from [2] assumes that the WV-

polygon lies above the WV-edge by placing guards at l
and r and cutting off the portion of the polygon beneath
the WV-edge, see Figure 3(left). When every vertex
under consideration lies above this WV-edge, the order
claim holds and the visibility graph is terrain-like. How-
ever, consider doing the same thing for a WV-polygon
using half-guards that see to the right. In this case, the
remaining portion of the polygon cannot be assumed to
be above the WV-edge. As shown in the shaded parts
of Figure 3(right), the regions to the left of the placed
guards are not seen. More so, a guard placed at l will

Figure 3: On the left, a full-guard placed at l and r
cuts off the polygon below the WV-edge. On the right,
the shaded regions are still unseen after half-guards are
placed at l and r.

Figure 4: Example of vx and Lemma 1.

not dominate a guard placed in the shaded region to
the left of l. If the guards were full-guards, these re-
gions would be seen and the l guard would dominate
any optimal guard placed in this region. We show that
even though these portions of the polygon are unseen
and optimal guards can lie in these regions, the visibility
graph connecting vertices to the guards that see them is
still terrain-like.

2.1 Visibility Polygon is Terrain-Like

We will prove that the visibility polygon of the vertices is
terrain-like by using the following modified order claim
in WV-polygons that applies to full-guards as well as
half-guards. Order the vertices walking in clockwise
order starting from l: (v1 = l, v2, v2, . . . , vn = r).
Modified Order Claim: Assume that guards are placed at
l and r and then consider the remaining unseen vertices.
If 4 vertices are in order such that a < b < c < d, then
if a sees c and b sees d, then a sees d.
As shown in [2], if all of a, b, c and d lie above the WV-
edge, then the order claim holds and a sees d. If both
a and d are below the WV-edge and both see l or both
see r, then the same arguments from [2] hold for why a
must see d.

The following lemmas are given for WV-polygons that
apply to full-guards. For simplicity of the arguments, we
assume that the WV-edge is parallel to the x-axis. Let
vx be the vertex such that every vertex [vx+1, vn−1] is
below the WV-edge. If no vertex meets this requirement,
then vx = vn = r. In other words, vx is the last vertex
that is above the WV-edge when walking clockwise from
l to r, see Figure 4(left).
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Figure 5: If a is blocked from d, then the blocker must
be either l or r.

Lemma 1 If vi ∈ [v1, vx], then no vertex vk ∈ [vi+1, vn]
can block vi from l.

Proof. Assume that vk blocks vi from seeing l. If this
happens, then vk is to-the-left (when looking from l)
of the lvi line segment, see Figure 4(right). Let x be
any point on the WV-edge that vi sees. The xvi line
segment is to the right (when looking from l) of the
lvi line segment. This line segment is also blocked by
vk which means vi does not see any point on the WV-
edge. The polygon is not weakly-visible and we have a
contradiction. □

Corollary 2 Let vw be the vertex such that every vertex
[v2, vw−1] is below the WV-edge. If no vertex meets this
requirement, then vw = v1 = l. If vi ∈ [vw, vn], then no
vertex vk ∈ [v1, vi−1] can block vi from r.

Lemma 3 Consider 4 vertices in a WV-polygon such
that a < b < c < d, a sees c, b sees d and a does not
see d. If a is below the WV-edge and d is above the
WV-edge, then a and d must both see l.

Proof. Since a is below the WV-edge, a must see l. If
a does not see l, then the polygon is not weakly-visible.
If d does not see l, then by Lemma 1, the vi blocker

for d must lie in the (l, d) range. If vi ∈ (b, d), then vi
would block b from d. If vi = (a, b], then a would not
see c. It is not possible for vi = a since a is below the
WV-edge. Lastly, if that vertex vi ∈ (l, a), then it would
block a from seeing l, see Figure 5(left). Since there is
no way to block d from l, d must see l. □

Corollary 4 Consider 4 vertices in a WV-polygon such
that a < b < c < d, a sees c, b sees d and a does not
see d. If a is above the WV-edge and d is below the
WV-edge, then a and d must both see r.

This brings us to our final Lemma with full-guards:

Lemma 5 If the order claim is broken, then a sees
either l or r and also, d sees either l or r.

Proof. If a < b < c < d, a sees c, b sees d, a does not
see d and a and d are both below the WV-edge, then
a sees l and d sees r. This, along with Lemma 3 and
Corollary 4, cover the remaining cases. □

Returning to the discussion with respect to half-guards.
Lemma 5 applies to full-guards. A modification of
Lemma 5 is given to apply to half-guards:

Lemma 6 If the order claim is broken, then at least
one of a, b, c or d is seen by either l or r.

The complete proof of Lemma 6 is given in the ap-
pendix. In short, if the order claim is broken, at least
one of a, b, c or d must lie to the right of l or r and will
necessarily be seen by one of l or r.
The analysis from [2] is now used to show a PTAS

exists. First, one checks to see if the polygon can be
guarded with a constant number of guards of some ap-
propriate size. If an optimal guarding set of this size
does not exist, then the first step of the algorithm is to
place guards at l and r and remove the vertices that l
or r see from consideration as they are already guarded.
By Lemma 6, an order claim violation is not possible
since at least one of the vertices involved in breaking the
order claim has already been guarded by l or r and will
not be in the modified problem instance. In other words,
the visibility graph connecting vertices to the guards
that see them are vertices that are not seen by l nor r.
Since the order claim cannot be broken, when looking at
the visibility graph of vertices connected to the leftmost
and rightmost guards that see them, if i < j < k < l,
(i, k) ∈ E and (j, l) ∈ E, then (i, l) ∈ E. With this claim,
the visibility graph for vertex guarding WV-polygons
with half-guards that see to the right is terrain-like.

It should also be noted that the orientation of the
polygon does not matter. For example, consider a poly-
gon where the WV-edge is parallel to the y-axis and
the “main” part of the polygon is to the right of the
WV-edge, see Figure 6(left). In this instance, guards
placed at l and r still cause the order claim to not be
broken in the unguarded vertices that remain. Figure 6
shows polygons where the order claim will not be broken.
No matter the orientation of the WV-edge, Lemma 6
holds for half-guards as well as full-guards.

Since the visibility graph is terrain-like, we use Theo-
rem 1 from [2] to state the following:

Theorem 7 There exists a PTAS for vertex guarding a
weakly-visible polygon with half-guards where half-guards
can only see to the right.

3 NP-hardness for Vertex Guarding a WV-Polygon
with Half-Guards

In this section, we provide a sketch for showing that
vertex guarding a WV-polygon with half-guards is NP-
hard. NP-hardness for terrain guarding with full-guards
was shown in [7], however, the entire terrain is not seen if
guards are only allowed to look down. In the appendix,
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Figure 6: Shows the portion of the polygon “below” the
WV-edge that is not seen by l or r.

Figure 7: An overview of NP-hardness for WV-polygons.

we provide several new and updated gadgets to the
reduction from [7] to show that vertex guarding a terrain
with half-guards that only look down is NP-hard.

We will show how to use the terrain guarding hardness
result for guards that only see down to show that vertex
guarding a WV-polygon with half-guards that see to
the right is NP-hard. One can take the modified terrain
reduction, rotate it counterclockwise 90° and connect
vertex l to vertex r to create a WV-polygon that is
visible from the edge e = (l, r), see Figure 7(left). The
reduction holds the same way that it does for vertex
guarding a terrain with half-guards that only see down.

One will notice that when the WV-edge is rotated
slightly counterclockwise, the reduction still holds, see
Figure 7(right). The key visibilities from the guards
remain and the polygon is still weakly-visible. The re-
duction begins to fail whenever a guard visibility from
the original reduction starts to have a negative slope. If
this happens, the guard no longer sees the distinguished
point(s) to its right. To account for this, the original
terrain is “stretched” such that none of the guard visi-
bilities have a negative slope. Details of this stretching
are in the appendix.

4 Conclusion and Future Work

In this paper, we present a PTAS for vertex guarding
WV-polygons with half-guards that see to the right.
This algorithm works regardless of the orientation of the
WV-edge. We also present an NP-hardness proof for
vertex guarding a WV-polygon with half-guards that

see to the right. Such a proof works for all instances
except when the WV-edge is parallel to the y-axis and
the “inside” of the polygon is to the left of the WV-edge.
Whether or not this problem is NP-hard is left as an open
problem. Future work might include finding a better
approximation for the point guarding version of this
problem. Insights provided in this paper may help with
guarding polygons where the guard can choose to see
either left or right, or in other natural directions. One
may also be able to use these ideas when allowing guards
to see 180° but guards can choose their own direction,
i.e. 180°-floodlights.
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Appendix

Theorem 1 from [2]

Theorem There exists a PTAS for (general) minimum
dominating set in terrain-like graphs. That is, for any
ϵ > 0, there is a polynomial-time algorithm which, given
a terrain-like graph G = (V,E) and two sets C,W ⊆ V ,
returns Q ⊆ C such that Q dominates W and |Q| ≤
(1+ ϵ) ·OPT ; here OPT is the size of a minimum subset
of C that dominates W .

Proof of Lemma 6

Proof. We break up this proof into several cases.

1. If a and d are both above the WV-edge, then the
order claim cannot be broken as shown in [2].

2. If a is below the WV-edge and d is above the WV-
edge, then by Lemma 3, a and d see l. It also
must be the case that a and d are to the left of l
(otherwise l would see one of them). Since a sees
l, d sees l, a sees (or is seen by) c and b sees (or is
seen by) d, the entire ad line segment is surrounded
by visibility lines that cannot be pierced. Therefore,
a must see (or be seen by) d, a contradiction that
the order claim was broken. Since a and d cannot
both be to the left of l, it must be that l sees one
of them.

3. If a is above the WV-edge and d is below the WV-
edge, then by Corollary 4, r sees (or is seen by) a
and d. In order for r to not see a or d (and rather
be seen by both a and d), both must be to the left
of r. If b or c are below the WV-edge, then r will
see them. Therefore, b and c must be above the
WV-edge. Since d sees b, it must be the case that
b is to the right of r. Since b is above and to the
right of r, there must be a vertex that blocks r from
seeing b. By Corollary 2, the blocker for r to b must
be in the (b, r) range. If the blocker is in the (b, d)
range, then d would not see b. If the blocker is in the
(d, r) range, then d would not see r, a contradiction
that the polygon is weakly-visible. It must be the
case that r sees b.

4. If a and d are both below the WV-edge, a is to the
left of l and d is to the left of r, then in order for d
to see b, it must be the case that the db line segment
goes below r forcing b to be to the right of r. Similar
to case 3, r sees b. Although not necessary for the
proof, using similar arguments, one can show that l
sees c.

□

Figure 8: The left shows an overview of the NP-hardness
reduction for terrain guarding. The middle is a variable
gadget. The right is a starting gadget.

NP-hardness for Vertex Guarding a Terrain with Half-
Guards

Abusing notation, only in this section, we will assume
that half-guards can only see “down.” If we restrict
guards to be half-guards that see “down” in the terrain,
then the terrain guarding problem is still NP-hard. In
regular terrain guarding, a point p sees another point q
if the line segment connecting p and q does not go below
the terrain. In this half-guard variant, the point p sees q
only if the y-coordinate of p is greater than or equal to
the y-coordinate of q and the line segment connecting p
and q does not go below the terrain.

Sketch of Reduction

The terrain guarding reduction is from PLANAR 3SAT
[11] where an instance has n variables and m clauses.
The reduction works by assigning vertices on the terrain
to truth values of variables from the PLANAR 3SAT
instance. For each variable in the PLANAR 3SAT in-
stance, variable gadgets are created such that the gadget
contains a vertex representing xi and vertex represent-
ing xi, see Figure 8(middle). These variable gadgets
are grouped together in chunks on the terrain. Figure
8(left) shows an example of one such chunk that contains
one variable gadget for each variable in {x1, x2, . . . , xn}.
These chunks are replicated on the terrain such that a
guard placed at the xi vertex in the variable gadget of
xi in chunk Cj would require a guard to be placed at the
xi vertex in another variable gadget in a different chunk
Ck, see Figure 10 for an example of such mirroring of
data. There are points on the terrain that correspond
to clauses of the PLANAR 3SAT instance. For example,
if clause ci = (xi+1 ∨ xi+3 ∨ xi+4) were in the original
PLANAR 3SAT instance, then a point on the terrain
would exist that is seen by three vertices corresponding
to xi, xi+3 and xi+4. If one of those vertices has a guard
placed on it, then the clause would be satisfied. If none
of those vertices has a guard placed on it, then an extra
guard would be required to guard the terrain. If some
minimum number of guards were placed and the entire
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Figure 9: To ensure the entire terrain is seen, a guard
is placed at e to see vertices f and g along with the u
region.

terrain was seen, then the original instance was satisfied.
If not, then the original instance was unsatisfiable.

The interested reader is encouraged to read [7] to see
the full details of the original reduction. We modify the
gadgets from [7] and show how these modified gadgets
work for guards that can only see down.

Terrain Hardness Modifications

We describe the changes to the gadgets of [7] that must
be made in order for the reduction to hold. Each part
will explain why the original gadget doesn’t work for
this half-guard variant and what changes must be made
in order to have the reduction hold.

Between Chunks: Let us order the chunks from top
to bottom (C1, C2, . . . , Cm). We will assume that all
variables gadgets in chunk Ci are below all variable
gadgets in chunk Ci−1. In the original reduction, the
terrain between Ci the Ci+2 is seen by any guard placed
in the Ci+1 chunk. Since guards can only see down in
this variant, a portion of the terrain, which we will call
u, below the lowest variable gadget in Ci and above
the highest variable gadget in Ci+1 will be unseen, see
Figure 9. To fix this, we place a new gadget on the
other side of the terrain from Ci. This gadget is at the
same y-coordinate of the lowest variable gadget in chunk
Ci. This ensures that the new guard will not affect the
mirroring. The vertices f and g can only be seen from
vertex e. Placing a guard at e will see f and g and also
see the unseen region u below chunk Ci.

Variable Gadget: The variable gadgets, shown in Figure
10, do not need to be tweaked much to work. Assume
the xi vertex in the variable gadget in chunk Cj has a
guard placed on it and it sees b. In this case, a guard is
placed at xi in the variable gadget in chunk Cj+1 to see
a and c. The entire xi variable gadget in chunk Cj+1

is seen. Likewise, if a guard placed at xi in chunk Cj

sees a, then a guard is placed at xi in chunk Cj+1 sees b
and c. A small portion of the terrain below xi in chunk

Figure 10: The variable gadget remains unchanged from
[7].

Figure 11: The overview of the terrain reduction where
guards see down.

Cj+1 may have been missed, see Figure 10. However, if
the xi vertex in chunk Cj is lowered just slightly, then
the guard placed at xi in Cj will see this region and
an additional guard is not required. One must ensure
the previously placed xi does not see b but it can see
anything in this gadget above b. Therefore, we ensure
that xi in the previous variable gadget is placed in such
a way that it blocks xi from seeing just above b in the
subsequent variable gadget.

Removing a Variable: We will assume we are removing
a variable from chunk Ci. When a variable gadget is
removed going upwards, the gadget is modified slightly
to remove the a and b vertices. Such a gadget is also
called a starting gadget. When a guard is placed at
the “lower” vertex in this gadget, a small portion of the
terrain below the “higher” vertex remains unseen. In
Figure 8(right), a starting gadget is shown. A guard
placed at xi would not see the small portion of the
terrain below the xi guard. To ensure this region is seen,
we look at the variable patterns placed in the chunk
above it, chunk Ci−1. The guard placed in the lowest
variable pattern will see all of these potentially unseen
portions. For example, in Figure 11, the guard placed in
the variable gadget, xk, directly above the rl point will
see all of these unseen regions in the variable patterns
between lr and the variable gadget for xk in chunk C2.
Therefore, no modification is needed and no additional
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Figure 12: The inversion gadget for variable xi in chunk
Cj+1. This gadget is not tweaked but the variable gadget
xi in chunk Cj is modified slightly.

guard is needed.

When removing a variable going down, the variable
gadget is simply removed. The guard placed in the
previous chunk’s lowest variable gadget will see this
region. If the lowest variable was being removed, then
the e guard in the gadget that sees between chunks will
see this region (see Figure 9).

Above chunk C1 and C2: Since guards cannot see “up,”
a guard must be placed that guards the terrain above
the first set of variable gadgets in chunk C1 and above
the variable gadgets in C2. Assume WLOG that C1 is
on the left side of the terrain. Two guards are placed
at points l and r as shown in Figure 11. These guards
are required to see their own set of distinguished points,
namely ll, lr, rr and rl. They see the “top” of the terrain
above chunks C1 and C2. Since all gadgets in chunk
C1 are starting gadgets, rl is placed below chunk C1 to
ensure the relevant part of the terrain in the starting
gadgets and the terrain above the chunk are seen.

Clause Gadgets: No change is needed for the clause
gadgets. All points in the clause gadgets are seen by the
appropriate vertices above it.

Inversion Gadgets: A small update is needed for the
inversion gadgets. See Figure 12 for a sample inversion
gadget placed in chunk Cj+1. If a guard from the variable
gadget xi in chunk Cj sees point p, then when guards
are placed at xi1 and xi2, the entire gadget is seen. If
the guard from chunk Cj guard sees point q, then guards
are placed at xi1 and xi2. This leaves a small portion
of the terrain unseen, the line segment e in Figure 12.
To fix this, similar to the tweak of the variable gadget,
the previously placed guard in chunk Cj is tweaked such
that it sees just over the xi1 guard. In this example,
the previously placed guard must see q and not see p.
As long as it is blocked from p, this is all that matters.
Therefore, it can be tweaked to see the e line segment.

Putting it all together: As seen above, certain tweaks
and updates are made to ensure that the entire terrain
is seen. Making these changes will cause the minimum

Figure 13: A stretched WV-polygon such that the NP-
hardness result holds.

number of guards that must be placed, k, to increase by
m+1. An additional m− 1 guards are needed to see the
unseen regions between chunks. Two additional guards
are added at l and r to see the “top” of the terrain. This
gives us a total of m− 1+2 = m+1 additional required
guards. None of these additional required guards see any
of the original distinguished points of the terrain. They
see their own set of distinguished points and also see the
portion of the terrain that would have been unseen. As
shown in [7], if k guards can guard the entire terrain,
the instance is satisfiable. If more than k are needed,
then the instance is not satisfiable.

Theorem 8 Finding the smallest vertex guard cover
for guarding a terrain using half-guards that see down is
NP-hard.

Stretching WV-Polygon Hardness

An example of this stretching is seen in Figure 13(left).
As seen in the example, the original bottom of the terrain
is pulled up and to the right to ensure the polygon
remains weakly-visible and all important lines of sight
look to the right. The l and r vertices are tweaked slightly
to ensure they also see their respective distinguished
vertices to the right.

This stretching of the polygon works even if the WV-
edge has a positive slope, see Figure 13(right). The
polygon can continue to be stretched as far up and right
as necessary. However, the tweak fails when the WV-
edge is a vertical edge and the inside of the polygon is to
the left of the edge. We leave this as an open problem.
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A Randomized Algorithm for Non-crossing Matching of Online Points
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Abstract

We study randomized algorithms for the online non-
crossing matching problem. Given a sequence of n on-
line points in general position, the goal is to create a
matching of maximum size so that the line segments
connecting pairs of matched points do not cross. In
previous work, Bose et al. [CCCG 2020] showed that a
simple greedy algorithm matches at least ⌈2n/3−1/3⌉ ≈
0.6̄n points, and it is the best that any deterministic
algorithm can achieve. In this paper, we show that ran-
domization helps to achieve a better competitive ratio,
that is, we present a randomized algorithm that matches
at least 235n/351− 202/351 ≈ 0.6695n points.

1 Introduction

In the geometric matching problems, the input is a set
of geometric objects, and the goal is to create a pair-
wise matching of these objects under different restric-
tions and objectives. In the bottleneck matching prob-
lem, for example, the goal is to create a perfect match-
ing of n points, assuming n is even, so as to minimize
the maximum length of the line segments that connect
matched pairs [8]. Using the same terminology as in
graph theory, we refer to the line segments that connect
pairs of matched vertices as the edges of the matching.
Other variants of the geometric matching problems ask
for perfect matchings that minimize the total length of
edges [4] or maximize the length of the shortest edge
[6]. Matching objects other than points are also studied
(see, e.g., [1, 2])

In the non-crossing matching problem, the input is a
set of points in general position, and the goal is to match
points in a way that the edges between the matched
pairs do not cross. In the offline setting, it is rather easy
to solve the problem: one can sort all points by their
x-coordinate and match pairs of consecutive points. All
points, except possibly the last one, will be matched.
The running time of this algorithm is O(n log n), which
is asymptotically optimal [5]. Other variants of non-
crossing matching have been studied in the offline set-
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ting (see [7]). For example, Aloupis et al. [1] considered
the computational complexity of finding non-crossing
matching of a set of points with a set of geometric ob-
jects that can be a line, a line segment, or a convex
polygon.

Bose et al. [3] studied the online variant of the non-
crossing matching. Under this setting, the input is a set
of n points in general position that appear in an online,
sequential manner. When a point x arrives, an online al-
gorithm can match it with an existing unmatched point
y, provided that the edge between them does not cross
previous edges in the matching. Alternatively, the al-
gorithm can leave the point unmatched to be matched
later. In taking these decisions, the algorithm has no
information about the forthcoming points or the length
of the input. The algorithm’s decisions are irrevocable
in the sense that once a pair of points is matched, that
pair cannot subsequently be removed from the match-
ing. The objective is to find a maximum matching.

Under a worst-case analysis, where an adversary gen-
erates the online sequence, it is not possible to match all
points. For example, consider an input that starts with
two points x and y. If an online algorithm leaves the
two points unmatched, then the adversary ends the se-
quence, and the matching is already sub-optimal. If the
algorithm matches x and y, then the adversary gener-
ates the next two points on the opposite sides of the line
between x and y, and the matching will be sub-optimal
for this input of length n = 4. Bose et al. [3] extended
this argument to show that in the worst case, no deter-
ministic algorithm can match more than ⌈2n/3 − 1/3⌉
points. Meanwhile, they showed that any greedy algo-
rithm matches at least ⌈2n/3 − 1/3⌉ points, and hence
is optimal. An algorithm has the greedy property if it
never leaves a point x unmatched if there is a suitable
unmatched point y that x can be matched to (that is,
the edge between x and y does not cross existing edges
in the matching).

1.1 Contribution

We study randomized algorithms for the non-crossing
matching problem. As in [3], we study worst-case sce-
narios, where the input is generated adversarially. We
assume the adversary is oblivious to the random choices
made by the algorithm, but it is aware of how the algo-
rithms works (that is, the code of the algorithm).

We present a randomized algorithm that matches at
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least ⌊235n/351− 202/351⌋ ≈ 0.6695n points on expec-
tation for any input of size n. This shows the advantage
of randomized algorithms over deterministic ones, which
match roughly 0.6̄n points in the worst case.

There are two main components in our randomized al-
gorithm. First, the algorithm maintains a convex parti-
tioning of the plane and matches two points only if they
appear in the same partition. This is followed by up-
dating the partitioning by extending the edge between
the matched pair. This partitioning enables us to use
a simple inductive argument to analyze the algorithm.
Second, the algorithm deviates from the greedy strat-
egy. In particular, the algorithm gives a chance for an
incoming point x to stay unmatched even if there are
one or two points in the same convex region that it can
match. As we will see, this will be essential for any
improvement over deterministic algorithms.

2 A Randomized Online Algorithm

We present and analyze a randomized online algorithm
for the non-crossing matching problem. In what follows,
for any a ̸= b we use Lab to denote the line passing
through a and b, and Sab to denote the line segment
between a and b.

2.1 Algorithm’s description

The algorithm maintains a partitioning of the plane into
convex regions and matches points only if they belong
to the same region. In the beginning, there is only one
region that is formed by the entire plane. After four
points appear inside a convex region, one or two pairs of
points are matched, and the convex region is partitioned
into two or three convex regions by extending the line
segments passing through the matched pairs.

Let x, y, z, and w be the first four points inside a
convex region C in the same order. In what follows, we
describe how these four points are treated.

• Upon the arrival of x, there is no decision to make,
given that there is no point inside C to be matched
with x.

• Upon the arrival of y, it is matched with x with
a probability of 1/2 and stays unmatched with a
probability of 1/2.

• Upon the arrival of z, if the pair (x, y) is already
matched, then there is no decision to make. Oth-
erwise, z is matched with x with a probability of
1/3, with y with a probability of 1/3, and stays
unmatched with a probability of 1/3.

• Upon the arrival of w, there are two possibilities to
consider:

– First, suppose a pair of points a, b ∈ {x, y, z}
is already matched, while a third point c ∈
{x, y, z}/{a, b} is unmatched. If it is possi-
ble to match w with c (that is, Swc does not
cross Sab), then w is matched with c; other-
wise, when Swc and Sab cross, there is no de-
cision to make.

– Second, suppose no pair of the first three
points are matched. Then w is matched with
a point a ∈ {x, y, z} so that the two points
b, c ∈ {x, y, z}/{a} appear on different sides
of the line Law (if there is more than one such
point, w is matched with z).

After the arrival of four points inside C, either all
points are matched into two pairs, in which case we
say a “double-pair is realized”, or only two points are
matched while the other two appear on different sides
of the matched pair, in which case we say a “single-pair
is realized”. If a single-pair is realized, in this case, C
is partitioned into two convex regions. If a double-pair
is realized, then algorithm extends the line segments
between the matched pairs until they hit the bound-
ary of C or the (non-extended) segment between the
other matched pair. This is followed by extending the
line segment between the second pair until it hits the
boundary of C or extended line that passes through the
first matched pair. When a double-pair is realized, C is
partitioned into three convex regions.

Assume n ≥ 8. A single-pair is “good” if, after the
appearance of all n points, both of the two regions re-
sulted from extending the line segment of the matching
contain at least 2 points, and it is “bad” otherwise. A
double-pair is said to be “good” if, after the appearance
of all n points, one of the three regions formed by ex-
tending the line segments of the two matchings is empty;
otherwise, it is “bad”. The presence of 2 or more than 2
points, or no points in a region provides a possibility of
matching all pairs; hence we assert that a single/double
pair is “good” or “bad” as specified above.

The following example illustrates the algorithm’s
steps. Consider an input formed by 10 points labeled
from p1 to p10 in the order of their appearance, as de-
picted in Figure 1. The convex regions maintained by
the algorithm are highlighted in different colors. Ini-
tially, the entire plane is a convex region C0, where point
p1 appears. Upon the arrival of p2, the algorithm match
it with p1 with a probability of 1/2. Suppose (p1, p2) are
matched. Then, there is no decision to be made for p3.
Upon the arrival of p4, the line segments Sp1p2

and Sp3p4

do not cross. Therefore, p4 is matched with p3. At this
point, four points have appeared in C0 and a double-
pair (p1, p2) and (p3, p4) has been realized. Therefore,
C0 is partitioned into three smaller convex regions C1,
C2, and C3 by extending Sp1,p2

and then Sp3,p4
(Fig-

ure 1a). Points p5 and p6 appear respectively in C3 and
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(a) The state of the algorithm after processing p1, . . . , p4.
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(b) The state of the algorithm after processing p1, . . . , p10.

Figure 1: One possible output of the algorithm when the
input is a sequence of 10 points labeled as p1, . . . , p10 in
the order of their appearance.

C2. Since these are the first points in their respective
regions, there is no decision to be made, and they stay
unmatched. Subsequently, p7 appears in C3 and the
algorithm matches with p5 with a probability of 1/2.
Suppose these two points are not matched. Upon the
arrival of p8 in C3, it is matched with p5 or p7, each
with a probability of 1/3, and is left unmatched with a
probability of 1/3. Suppose (p5, p8) are matched. Next,
point p9 appears in C2 and is matched with p6 with a
probability of 1/2, and stays unmatched with a prob-
ability of 1/2. Suppose (p6, p9) are matched. Finally,
point p10 appears on C3. Given that the Sp7p10 crosses
Sp5p8

, there is no decision to be made, and p10 stays
unmatched. At this point, four points have appeared in
C3, and a single-pair (p5, p8) has been realized. There-
fore, C3 is partitioned into two smaller convex regions
C4 and C5 by extending Sp5,p8 (Figure 1b).

2.2 Algorithm’s analysis

Let f(n) denote the expected number of unmatched
points left by the algorithm when input is formed by n
items. We use an inductive argument to find an upper
bound for f(n). First, we prove the following lemma.
The proof is based on case analysis, and can be found
in the appendix:

Lemma 1 (appendix) We have f(0) = 0, f(1) = 1,
f(2) = 1, f(3) = 4/3, f(4) ≤ 4/3, f(5) ≤ 5/3, f(6) ≤
20/9, and f(7) ≤ 52/18.

We use an inductive argument to prove f(n) ≤ cn +
d where c = 116/351 ≈ 0.3304 and d = 32c − 10 =
202/351 ≈ 0.5754. First, we apply Lemma 1 to establish
the base of induction in the following theorem.

Lemma 2 (appendix) For n ∈ [2, 7], it holds that
f(n) ≤ cn+ d where c = 116/351 and d = 202/351.

Lemma 3 For n ≥ 8, after serving the first four points
inside a convex region, at least one of the followings
hold:

• A good single-pair is realized with a probability of
at least 1/6

• A good double-pair is realized with a probability of
at least 1/6.

Proof. (sketch) We provide a sketch of the proof here.
The detailed proof can be found in the appendix. Let
x, y, z, and w denote the first four points in the same
order that they appear.

First, suppose the convex hull formed by the four
points is a triangle ∆. If w is inside ∆, then the pairs
(x, y) and (w, z) form a double-pair that is realized with
a probability of 1/2. If this is bad, then there should be
at least one future point on each side of the line passing
through (w, z), which means (w, z) is a good single-pair.
We note that the single-pair formed by (w, z) is realized
with a probability of 1/6. Next, suppose w is a vertex of
∆ and another point c ∈ {x, y, z} is inside ∆. Let a, b be
the other two points in {x, y, z}. Then, the pairs (a, b)
and (c, w) form a double-pair which is realized with a
probability of at least 1/6. If this double-pair is not
good, then (w, z) is a good single-pair which is realized
with a probability of 1/6.

Next, suppose the convex hull formed by the four
points is a quadrilateral and includes all of them as
its vertices. In this case, each of the two single-pairs
formed by the diagonals of the convex hull is realized
by a probability of at least 1/6. If both of these single-
pairs are bad, then all the remaining points in the in-
put sequence must appear in one of the quarter-planes
formed by extending these diagonals. Then, the double-
pair formed by the pair of points on the boundary of
the quarter-plane and the pair of points outside of the
quarter-plain form a good double-pair. The probability
of such a double-pair to be realized is at least 1/6. □

We are now ready to prove the main result.

Theorem 4 There is a randomized algorithm that, for
any input formed by n ≥ 2 points, leaves at most cn+ d
points unmatched, where c = 116/351 and d = 202/351.

Proof. We use an inductive argument to show that our
algorithm satisfies the conditions specified in the theo-
rem. For n ≤ 7, the claim holds by Lemma 1. Suppose
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n ≥ 8, and assume that for any m < n, it holds that
f(m) ≤ cm+ d.

First, we claim that the number of unmatched points
is at most cn + d + (2 − 6c) when a bad single-pair is
realized, or a bad double-pair is realized after the first
four points appear. If a bad single-pair is realized, then
either (I) there is one point on one side of the matched
pair and n − 3 > 2 points on the other side, or (II)
there is no point on one side of the matched pair and
n − 2 > 2 points on the other side. For (I), by the
induction hypothesis, the number of unmatched points
on the side with n− 3 points will be at most f(n− 3) ≤
cn−3c+d. Therefore, the number of unmatched points
is at most f(n−3)+1 ≤ cn−3c+d+1 < cn+d+(2−6c).
The last inequality holds because c < 1/3. For (II), the
number of unmatched points will be at most f(n−2) ≤
cn+d−2c < cn+d+(2−6c). If a double-pair is realized
which is not good, then one of the followings holds for
the three regions formed by extending the line segments
between the matched pairs:

i) One region contains n−6 points, and the other two
regions each contains one point. Note that n− 6 ≥
2 since n ≥ 8. By the induction hypothesis, the
number of unmatched points is at most 2 + f(n −
6) = cn+ d+ (2− 6c).

ii) One region contains m ≥ 2 points, another region
contains one point, and the third region contains
n −m − 5 ≥ 2 points. The number of unmatched
points is at most f(m) + f(n−m− 5) + 1 ≤ cn−
5c+2d+1 < cn+ d+(2− 6c). The last inequality
holds because c+ d < 1.

iii) One region contains m1 ≥ 2 points, one region con-
tains m2 ≥ 2 points, and the third region contains
m3 = n − m1 − m2 − 4 ≥ 2 points. The number
of unmatched points is at most f(m1) + f(m2) +
f(m3) ≤ cn− 4c+3d < cn+ d+ (2− 6c). The last
inequality holds because c+ d < 1.

In summary, if a bad single-pair or a bad double-pair
is realized, the number of unmatched points is at most
cn+ d+ (2− 6c), and the claim holds.
By Lemma 3, after the appearance of the first four

points, either a) a good pair or b) a good double-pair
can be realized with a probability of at least 1/6.

Suppose case a) holds, that is, a good single-pair is
realized with a probability of at least 1/6, which im-
plies a bad single-pair or double-pair is realized with a
probability of at most 5/6. In case the good single-
pair is realized, there will be m ≥ 2 points on one
side of the line segment connecting matched pair, and
n − m − 2 ≥ 2 points on the other side. There-
fore, the number of unmatched points will be at most
f(m)+f(n−m−2) ≤ cn+2d−2c = (cn+d)+(d−2c).
On expectation, the number of unmatched points will be

at most 1/6((cn+d)+(d−2c))+5/6(cn+d+(2−6c)) =
cn+ d+ 1/6(d− 32c+ 10) = cn+ d. The last equality
holds because d = 32c− 10.

Next, suppose case b) holds, that is, a good double-
pair is realized with a probability of at least 1/6, which
implies a bad single-pair or double-pair is realized with a
probability of at most 5/6. In case the good double-pair
is realized, by definition, at least one of the three con-
vex regions formed by extending the double-pair will be
empty. For the other two regions, we have the following
cases:

i) One region is empty, and the other contains n−4 ≥
2 points, in which case the number of unmatched
points becomes f(n− 4) ≤ cn+ d− 4c < cn+ d+
(1− 5c). The last inequality holds because c < 1.

ii) One region contains a single point, and the other
one contains n − 5 ≥ 2 points. The number of
unmatched points will be at most f(n − 5) + 1 ≤
cn+ d+ (1− 5c).

iii) Both regions include m ≥ 2 and n − m − 4 ≥ 2
points. In this case, the number of unmatched
points will be at most f(m) + f(n − m − 4) ≤
cn + d + (d − 4c) < cn + d + (1 − 5c). The last
inequality holds because c+ d < 1.

Therefore, as long as the good double-pair is realized,
the number of unmatched points will be at most cn +
d + (1 − 5c). On expectation, we can write f(n) ≤
1/6((cn + d) + (1 − 5c)) + 5/6((cn + d) + (2 − 6c)) =
cn + d + 1/6(11 − 35c) < cn + d. The last inequality
holds since c > 11/35. □
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Appendix

In order to prove Lemma 1, we first prove the following
lemma:

Lemma 5 After four points arrived in the convex region C,
with a probability of at least 1/3, a double-pair is realized,
and with a probability of at most 2/3, a single-pair is realized.

Proof. Let x, y, z, and w denote the four points in the same
order they appear. There are two cases to consider:

• Suppose Sxy crosses Swz. With a probability of 1/2, x
and y are not matched. After that, with a probability of
2/3, z is matched to x or y. Without loss of generality,
assume z is matched with x. Given that Sxy crosses
Swz, line segments Sxz and Syw will not cross, implying
that w is matched to y, and a double-pair is realized.
So, with a probability of at least 1/2 · 2/3 = 1/3, all
points are matched, and a double-pair is realized.

• Suppose Sxy does not cross Sxz. Then, (x, y) are
matched with a probability of 1/2, and after that, (w, z)
are matched, and a double-pair is realized.

□

Using Lemma 5, we can prove Lemma 1:

Lemma 1 We have f(0) = 0, f(1) = 1, f(2) = 1, f(3) =
4/3, f(4) ≤ 4/3, f(5) ≤ 5/3, f(6) ≤ 20/9, and f(7) ≤ 52/18.

Proof. Suppose n items appear in a convex region C. The
proof is trivial for n ≤ 2. In what follows, we prove the
lemma for other values of n.

• For n = 3, it is possible that all points stay unmatched,
which happens when the second point is not matched
with the first one (with a probability of 1/2), and then
the third point is not matched with any of the first
two points (with a probability of 1/3). Therefore, with
a probability of 1/6, all three points stay unmatched,
and one point stays unmatched with a probability of
5/6. We can write f(3) = 1/6 · 3 + 5/6 · 1 = 4/3.

• For n = 4, using Lemma 5, we can write f(4) ≤ 1/3 ·
0 + 2/3 · 2 = 4/3.

• For n = 5, after the first four points appeared, either a
single-pair or a double-pair is realized:

– Suppose a single-pair is realized. Then, C is parti-
tioned into two regions, one containing one point
and the other one containing two points. There-
fore, it is expected that f(1) + f(2) = 2 points
stay unmatched.

– Suppose a double-pair is realized. Then, the first
four points are matched, and only the fifth point
stays unmatched.

By Lemma 5, with a probability of at least 1/3, a
double-pair is realized, and with a probability of at
most 2/3, a single-pair is realized. Therefore, we can
write f(5) ≤ 1/3 · 1 + 2/3 · 2 = 5/3.

• For n = 6, after the first four points appeared, either a
single-pair or a double-pair is realized:

– Suppose a single-pair is realized. Then, C is par-
titioned into two regions. Either (i) the fifth or
the sixth points appear on the same region, in
which case one region will have one point, and
the other one will have three points, or (ii) the
fifth and the sixth points appear in different re-
gions, in which case each region contains two
points. Therefore, it is expected that at most
max{f(1) + f(3), f(2) + f(2)} = 7/3 points stay
unmatched.

– Suppose a double-pair is realized. Then, at most
2 points (the last two points) stay unmatched.

By Lemma 5, with a probability of at least 1/3, a
double-pair is realized, and with a probability of at
most 2/3, a single-pair is realized. Therefore, we can
write f(6) ≤ 1/3 · 2 + 2/3 · 7/3 = 20/9.

• For n = 7, after the first four points appeared, either a
single-pair or a double-pair is realized:

– Suppose a single-pair is realized. Then, C is par-
titioned into two regions. Either (i) the fifth, the
sixth, and the seventh points all appear in the
same region, in which case one region has one
point, and the other one has four points (Fig-
ure 2a), or (ii) one of these points appear in one
region, and the other two appear in the other re-
gion, in which case one region contains two points,
and the other region contains three points (Fig-
ure 2b). Therefore, it is expected that at most
max{f(1) +f(4), f(2) +f(3)} ≤ max{1 + 4/3, 1 +
4/3} = 7/3 points stay unmatched.

– Suppose a double-pair is realized. Then, at
most three points stay unmatched, which happens
when any of the three regions formed by partition-
ing of the first four points includes a single point
(see Figure 2c).

Unlike other cases, here, the expected number of un-
matched points is larger when a double-pair is real-
ized, and hence we cannot use Lemma 5. Instead,
we note that the probability of a single-pair being re-
alized is at least 1/6 This is because a single-pair is
realized if either (i) the first two points are matched
with a probability of 1/2, and the other two points ap-
pear on opposite sides of the line passing through the
matched points, happening with a total probability of
1/2, (ii) the first two points are not matched with a
probability of 1/2, and the third point is matched to
either of the first points with a probability of 1/3, and
the fourth point appears on the side of the matched
line that the other unmatched point is not on, hap-
pening with a total probability of 1/6, or (iii) the
first three points stay unmatched with a probability of
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(a) The case where a single-pair is real-
ized, and the last three points appear in
different regions.

a

c
d

b

(b) The case where a single-pair is real-
ized, and the last three points appear in
different regions.

a

c

b
d

(c) The case where a double-pair is real-
ized, and the last three points appear in
different regions.

Figure 2: The cases used in the calculation of f(7);
a, b, c, d ∈ {x, y, z, w} where x, y, z, and w are the first
four points in the same order of their appearance.

1/2·1/3 = 1/6, and then the fourth point gets match to
the point that bisects the unmatched points, happening
with a total probability of 1/6. Therefore, we can write
f(7) ≤ 5/6 · 3 + 1/6 · 7/3 = 52/18 (see Figure 2).

□

Lemma 2 For n ∈ [2, 7], it holds that f(n) ≤ cn + d where
c = 116/351 and d = 202/351.

Proof. The proof follows from Lemma 1. For n = 2, we
have f(2) = 1 < 2c + d (since 2c + d > 1.2362). For n = 3,
we have f(3) = 4/3 = 3c + d (since 3c + d > 1.5669). For
n = 4, we have f(4) ≤ 4/3 < 4c + d (since 4c + d > 1.8974).
For n = 5, we have f(5) ≤ 5/3 < 5c + d (since 5c + d >
2.2279). For n = 6, we have f(6) ≤ 20/9 < 6c + d (since
6c + d > 2.5584). For n = 7, we have f(7) ≤ 52/18 = 7c + d
(note that 7c + d = 52/18). □

Next, we provide the detailed proof of Lemma 3:

Lemma 3 For n ≥ 8, after serving the first four points
inside a convex region, at least one of the followings hold:

• A good single-pair is realized with a probability of at
least 1/6

• A good double-pair is realized with a probability of at
least 1/6.

Proof. Let x, y, z, and w denote the first four points in the
same order that they appear.

First, suppose the convex hull formed by the four points
is a triangle ∆ which includes the fourth point inside it. We
consider the following two cases:

• Assume w is the point that is inside ∆. Then the pairs
(x, y) and (w, z) form a double-pair that is realized with
a probability of 1/2. This is because the pair (x, y) is
matched with a probability of 1/2, and then the pair
(w, z) is matched with a probability of 1. Meanwhile,
(w, z) is a single-pair which is realized with a probabil-
ity of 1/6. This is because, with a probability of 1/6,
the first three points stay unmatched, and then the al-
gorithm matches w to z with a probability of 1. Now,
if the double pair formed by the pairs (x, y) and (w, z)
is bad, then there should be at least one future point
on each side of the line passing through (w, z), which
means (w, z) is a good single-pair (see Figure 3a).

• Assume w is a vertex of ∆ and another point c ∈
{x, y, z} is inside ∆. Let a, b be the other two points
in {x, y, z}. Then, the pairs (a, b) and (c, w) form a
double-pair which is realized with a probability of at
least 1/6. This is because the pair (a, b) is matched with
a probability of at least 1/6 (the pair (a, b) is matched
with a probability of 1/2 if z /∈ {a, b}, and with a prob-
ability of 1/6 if z ∈ {a, b}), and then w is matched with
c with a probability of 1. Meanwhile, the pair (c, w) is
a single-pair which is realized with a probability of 1/6.
Similar to the previous case, if the double pair formed
by the pairs (a, b) and (c, w) is bad, then there should
be at least one future point on each side of (a, b), which
means (a, b) is a good single-pair (see Figure 3b).

Next, suppose the convex hull formed by the four points
is a quadrilateral and includes all of them. Consider the
two single-pairs formed by the diagonals of the convex hull.
Any of these pairs can be realized with a probability of at
least 1/6. Specifically, the diagonal involving w is realized
when no pair of points from {x, y, z} are matched, which
takes place with a probability of 1/6. The other diagonal
is either between x and y, which is realized with a proba-
bility of 1/2, or between z and a ∈ {x, y}, which is realized
with a probability of 1/6. Therefore, if any of the two diag-
onal forms a good single-pair, the statement of the lemma
holds, and we are done (see Figure 3c). If none of the two
diagonals is good, then all the remaining points in the input
sequence should appear in one of the quarter-planes formed
by extending these diagonals (see Figure 3d). Then, the
double-pair formed by the pair of points on the boundary
of the quarter-plane (points b and c in Figure 3d) and the
pair of points outside of the quarter-plain (points w and a in
Figure 3d) form a good double-pair. The probability of such
a double-pair to be realized is at least 1/6. This is because
one of the pairs in the double-pair involves two of the first
three points. If these points are (x, y), the double-pair is
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Figure 3: An illustration of the proof of Lemma 3. (a)
when w is inside the triangle ∆, either the single-pair
formed by (w, z) is a good single-pair, or the double-
pair formed by (x, y), (w, z) is a good double-pair. (b)
when c ∈ {x, y, z} is inside the triangle ∆, either the
double pair formed by (a, b), (w, c) is a good double-
pair, or the single-pair formed by (w, c) is a good single-
pair. (c) the case when at least one of the diagonals of
the convex hull formed by the four points (here (w, b))
forms a good single-pair (d) when none of the single-
pairs formed by the diagonals of the convex hull are
good, all remaining points appear in one of the quarter-
planes formed by extending these diagonals; therefore,
the pair of points on the boundary of the quarter-plane
(here (b, c)) and the pair of points outside the quarter-
planes (here (w, a)) form a good double-pair.

realized with a probability of 1/2; otherwise, it is realized
with a probability of 1/6. □
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Online Square Packing With Rotation

Shahin Kamali∗ Pooya Nikbakht†

Abstract

In the square packing problem, the goal is to place a
multi-set of square items of different side lengths in (0, 1]
into a minimum number of square bins of uniform side
length 1. In the online setting, the multi-set of items
forms a sequence that is revealed in an online and se-
quential manner. When an item is revealed, an online
algorithm has to place it into a square bin without any
prior knowledge of the forthcoming items. All existing
results for the online square packing are restricted to the
case when square items are placed orthogonally to the
square bins. In this paper, we provide an algorithm with
an asymptotic competitive ratio of 2.306 when squares
are allowed to be rotated.

1 Introduction

An instance of the square packing problem is defined
with a multiset of squares-items of different sizes in the
range (0, 1]. The goal is to place these squares into a
minimum number of unit square bins in a way that two
squares-items placed in the same square bin do not in-
tersect. The problem is a generalization of the classical
bin packing problem into two dimensions. As such, we
sometimes refer to the squares-items simply as items
and square bins as bins. A square item can be recog-
nized by the length of its side, which we refer to as the
size of the square.
In the offline setting, all square items are given in ad-

vance, and the algorithm can process them as a whole
before placing any item into a bin. In particular, the
algorithm can sort squares in the decreasing order of
their sizes, and this comes in handy in many settings.
In the online setting, the multi-set of items forms a se-
quence that is revealed in an online and sequential man-
ner. Items are revealed one by one; when an item is re-
vealed, an online algorithm has to place it into a square
bin without any prior knowledge of forthcoming items.
The decisions of algorithms are irrevocable.
Square packing has many applications in practice.

One prominent application is cutting stuck where bins
represent stocks (e.g., wood boards) and items are re-
quests to squares of specific sizes. When requests arrive,
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an algorithm has to ‘cut’ the stock to provide the pieces
that match the requests. This cutting process is equiv-
alent to ‘placing’ items into bins. The goal of cutting
stock is to minimize the number of stocks which also
matches a square packing goal. We note that in many
practical applications, requests arrive in an online man-
ner and the stock should be cut without priory knowl-
edge about the future requests. It is needless to say
that the cutting process is irrevocable which gives an
inherently online nature to these applications of square
packing.

There has been a rich body of research around square
packing. To our knowledge, all existing results except
for our previous work on offline square packing [17], as-
sume that squares are not allowed to rotate, that is,
sides of square items should be parallel to the square
bins. While this assumption makes combinatorial anal-
ysis of the problem easier, might cause a higher cost. As
an example, consider an instance of the problem formed
by n items of size 0.36. If we do not allow rotation, any
bin can include at most 4 items, which results a total
cost of n/4 for any algorithm. Allowing rotation, how-
ever, 5 items fit in each bin and we can reduce the cost to
n/5 (see Figure 1). As a result, the number of required
bins is decreased by n/20 which is a notable saving in
practice (e.g., for cutting stock applications).

In this paper, we consider the online square packing
problem with rotation which is defined as follows.

Definition 1 In the online square packing with rota-
tion, the input is a multi-set of squares (items) with
sizes S = {x1, ..., xn} where 0 < xi ≤ 1. The goal is to
pack these squares into the minimum number of squares
of unit size (bins). In the offline setting, S is available
since the beginning. In the online setting, S is revealed
as a sequence σ = ⟨x1, x2, . . . , xn⟩ which is revealed in
an online manner. At time-step t, the value of xt is re-
vealed and an online algorithm has to place a square of

Figure 1: If all input items have length
√
2

2
√
2+1

≈ 0.35,

rotation allows packing 5 items per bin instead of 4.
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size x (1 ≤ t ≤ n). The decisions of the algorithm are
irrevocable and are made without knowing the values of
xt′ for t′ > t.

The asymptotic competitive/approximation ratio is
the standard method for analyzing packing problems.
We say an algorithm Alg has a competitive ratio of c
if there exists a constant c0 such that, for all n and for
all input sequences σ of length n, we have Alg(σ) ≤
c ·Opt(σ)+ c0 where A(σ) and Opt(σ) denote the costs
of A and Opt for processing σ, respectively, and are both
arbitrarily large.

1.1 Related work

The 1-dimensional bin packing has been studied exten-
sively in both offline and online settings (see, e.g., [14,
13, 6, 7]). In the 1-dimensional setting, each item has
simply a size ∈ (0, 1], and each bin has a capacity of 1.
In the offline setting, the problem is NP-hard, and the
best existing result is an algorithm that opens at most
Opt(σ)+O(logOpt) bins for placing a sequence σ [16].
In the online setting, the best existing algorithm has a
competitive ratio of 1.578 [2]. Meanwhile, it is known
that no online algorithm has a competitive ratio better
than 1.54278 [3].

There are many ways to extend bin packing to higher
dimensions (see [5] for a survey). Orthogonal pack-
ing square items into square bins is perhaps the most
straightforward extension. In the offline setting, the
problem is known to be NP-hard [18]. Bansal et al. [4]
provided an APTAS for this problem (indeed, for the
more general d-dimensional cubes). In the online set-
ting, the best existing upper and lower bounds have
improved a few times [19, 10]. The best existing algo-
rithm has a competitive ratio of 2.0885 [8] while the best
existing lower bound is 1.6707 [15].

In a previous work [17], we studied offline square
packing when the rotation of items is allowed. We
showed that, while the problem remains NP-hard, it
admits an APTAS under a resource-augmentation set-
ting, where bins of the algorithm have size 1+α, for an
arbitrary small α > 0, while bins of Opt have size 1.
If resource augmentation is not allowed, the problem is
likely ∃R-hard [17, 1].

1.2 Contribution

We consider the online setting and provide an online
algorithm that achieves a competitive ratio of 2.306 for
the square packing problem. Our algorithm is based
on classifying squares based on their sizes and placing
squares of similar sizes tightly, possibly using rotations,
in the same bins. This approach is previously used to
introduce different families of Harmonic algorithms for
bin packing in both one dimension and higher dimen-
sions. The presence of rotations, however, make our

classification and analysis different from the previous
work.

2 Square-Rotate algorithm

In this section, we introduce our square packing algo-
rithm called Square-Rotate.

2.1 Item classification

Similar to the Harmonic family of algorithms, we clas-
sify squares by the size of their side lengths (which we
simply refer to as the size of the items).

Square-Rotate packs squares of each class sepa-
rately from other classes. In total, there are 13 classes
of squares (having more classes is possible but leads to
none to small improvement of the final result). Square
items with sizes in the range (0, 0.1752] are in class 13.
We refer to class 13 as the tiny class, and items that
belong to this class are referred to as tiny items. We
refer to items that belong to class i ∈ [1, 12] as regular
items. For each class i ∈ [1, 12], the range of items in
the class is specified as (xi, xi−1] (for convenience, we
define x0 = 1). The values of xi’s are defined in a way
that a certain number of items, denoted by Si, of class i
can fit in the same bin. The specific range of item sizes
for each class i ∈ [1, 12] and values of Si is derived from
the best-known or optimal results [12] on the congruent
square packing problem [11], which asks for the mini-
mum size c(j) of a square that can contain j unit-sized
squares. A scaling argument, where the container size
is fixed to be 1, gives values of u(j) when the goal is
to pack j identical squares of maximum size u(j) into a
unit square.

In Figure 2, it is specified how Si items of the largest
size in class i can fit into a square bin. Therefore, the
scaled best-known values of u(j) for 1 ≤ j ≤ 36 can
be derived from the figure. These scaled numbers give
the specific ranges that we used for classifying items as
follows: Items of class 1 have sizes in the range (1/2, 1],
and we have x1 = 1/2. Note that exactly S1 = 1 item of
class 1 can fit in the same bin. For i ∈ [2, 12], Si is the
number of items of size xi−1 that fit in the same bin. For
example, for i = 2, we have S2 = 4 because x1 = 1/2,
and 4 items of size 1/2 fit in the same bin. Moreover,
xi is defined as the largest value so that Si +1 items of
size xi cannot fit in the same bin. For example, we have
x2 = 0.3694 because according to Figure 2, S2 + 1 = 5
squares of size 0.3694 cannot fit in the same bin.

The respective range of items for each class, as well as
the values of Si, are presented in Table 1. For example,
a square belongs to class 1, 2, or 12 if its side size is
in the interval (0.5, 1], (0.3694, .5], or (0.1752, 0.1779],
respectively.
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(a)
Class 1: x ∈
(0.5000, 1.0000]

(b)
Class 2: x ∈
(0.3694, 0.5000]

(c)
Class 3: x ∈
(0.3333, 0.3694]

(d)
Class 4: x ∈
(0.2697, 0.3333]

(e)
Class 5: x ∈
(0.2579, 0.2697]

(f)
Class 6: x ∈
(0.2500, 0.2579]

(g)
Class 7: x ∈
(0.2139, 0.2500]

(h)
Class 8: x ∈
(0.2073, 0.2139]

(i)
Class 9: x ∈
(0.2047, 0.2073]

(j)
Class 10: x ∈
(0.2000, 0.2047]

(k)
Class 11: x ∈
(0.1779, 0.2000]

(l)
Class 12: x ∈
(0.1752, 0.1779]

Figure 2: Placement of regular square items of class i ∈ [1, 12] in their respective bin. It is possible to pack i square
items of class i into a single square bin [12].

Class Side length x Si Occupied Area Weight Density

1 (0.5000, 1.0000] 1 > 1(0.250)=0.250 1 < 4.000
2 (0.3694, 0.5000] 4 > 4(0.136)=0.544 1/4 < 1.838
3 (0.3333, 0.3694] 5 > 5(0.111)=0.555 1/5 < 1.801
4 (0.2697, 0.3333] 9 > 9(0.072)=0.648 1/9 < 1.543
5 (0.2579, 0.2697] 10 > 10(0.066)=0.660 1/10 < 1.515
6 (0.2500, 0.2579] 11 > 11(0.062)=0.682 1/11 < 1.466
7 (0.2139, 0.2500] 16 > 16(0.045)=0.720 1/16 < 1.388
8 (0.2073, 0.2139] 17 > 17(0.042)=0.714 1/17 < 1.400
9 (0.2047, 0.2073] 18 > 18(0.041)=0.738 1/18 < 1.355
10 (0.2000, 0.2047] 19 > 19(0.040)=0.760 1/19 < 1.315
11 (0.1779, 0.2000] 25 > 25(0.031)=0.775 1/20 < 1.290
12 (0.1752, 0.1779] 26 > 26(0.030)=0.780 1/26 < 1.282
13 (0, 0.1752] > 0.702 1.425x2 ≈ 1.425

Table 1: A summary of item classification and details
on item weights and densities, as used in the definition
and analysis of Square-Rotate.

2.2 Packing regular items

For each class i (1 ≤ i ≤ 12), the algorithm has at most
one active bin of type i. When a bin of type i is opened,
it is declared as the active bin of the class, and Si square
spots, each having a size equal to the largest square of
class i, are reserved in the bin. Upon the arrival of an
item of class i, it is placed in one of the Si spots of the
active bin. If all these spots are occupied by previous
items, a new bin of type i is opened. This ensures that
all bins of type i, except potentially the current active
bin, include Si items.

2.3 Packing tiny items

For the last class, i.e., tiny items, the algorithm uses
a different approach, proposed by Epstein and van
Stee [9]. Briefly, it maintains at most one active bin
for placing tiny items. When a bin is opened for these
items, the algorithm reserves four square spots of size

1/2, i.e., the four squares of class 2 in Figure 2b. These
square spots are used as bins for placing tiny items.
Then, the algorithm chooses one of the innermost sub-
bin squares that has enough space for the arrived item
and repeats the procedure for the selected sub-bin un-
til it cannot split any of the innermost sub-squares into
four new ones with enough space for the item. At this
step, the item is placed in one of those smallest sub-
bins. When the next item arrives, if there is a sub-bin
of the smallest possible size in which the item can fit,
the algorithm places the item in that spot. Otherwise,
the algorithm finds the smallest sub-bin that can fit the
item and repeats the previous procedure to split it into
the smaller sub-bins to reach an appropriate spot for
the item. If no sub-bin with enough empty space is
available in the bin, the algorithm closes the current
bin and opens a new empty active bin for the item and
applies the whole process from the beginning (see [9],
for details). Note that the algorithm does not rotate
any of the tiny items to pack them. Epstein and van
Stee proved the following result, which we will use in
our analysis later.

Lemma 1 [9] Consider the square packing problem
(without rotation) in which all items are of size at most
1/M for some integer M ≥ 2. There is an online al-
gorithm (as described above) that creates a packing in
which all bins, except possibly one, have an occupied
area of size at least (M2 − 1)/(M + 1)2.

2.4 Algorithm’s analysis

In this section, we prove a competitive ratio of at most
2.306 for our algorithm. We use a weighting function
argument. For each item of size x, we define a weight
w(x) for the item and prove that: (1) the total weight
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of square items in each bin of the algorithm, except
potentially a constant number of them, is at least 1, and
(2) the total weight of items in each bin of an optimal
packing is at most 2.306. If w(σ) denote the total weight
of items in an input sequence σ, then (1) implies that
the number of bins opened by the algorithm is at most
w(σ) + c, for some constant value of c, and (2) implies
that the number of bins in an optimal packing is at least
w(σ)/2.306. Therefore, the (asymptotic) competitive
ratio of the algorithm would be at most 2.306.

Recall that all bins opened for squares of class i (1 ≤
i ≤ 12), except possibly the last active bin, include Si

squares. We define the weight of items of class i to
be 1/Si. This way, the total weight of items in bins
opened for all squares of classes 1 to 12, except possibly
12 of them (the last bin from each class), is exactly 1.
Therefore, (1) holds for bins opened for regular items.

We define the weight of a tiny square of size x as
x2/0.701(= 1.425x2). All tiny items are of size at most
0.1752. Therefore, by Lemma 1, the occupied area of all
bins opened for tiny items (except possibly one of them)
will be at least 0.701. This implies their total weight is
at least 0.701/0.701 = 1.

Table 1 gives a summary of the weights of items in
different classes. From the above argument, we conclude
the following lemma.

Lemma 2 The total weight of squares in each bin
opened by Square-Rotate, except possibly a constant
number of them, is at least 1.

The following lemma provides an upper bound for
the total weight of items in a bin of the optimal offline
algorithm (Opt). The proof works by case analysis and
can be found in the appendix.

Lemma 3 The total weight of items in every bin of
Opt is less than 2.306.

Provided with the above two lemmas, we can derive
the main result of this section.

Theorem 4 There is an online algorithm for the
square packing problem with rotation problem which
achieves a competitive ratio of at most 2.306.

Proof. For an input σ, let SR(σ) and OPT (σ) denote
the cost of Square-Rotate andOpt, respectively. Let
w(σ) denote the total weight of items of σ. Lemmas 2
implies that SR(σ) ≤ w(σ) + c, where c is a constant
independent of the length of σ. Meanwhile, Lemma 3
implies that Opt(σ) ≥ w(σ)/2.306. From these inequal-
ities, we conclude SR(σ) ≤ 2.306 OPT (σ) + c, which
proves an upper bound 2.306 for the competitive ratio
of Square-Rotate. □
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Appendix

Lemma 3 The total weight of items in every bin of Opt is
less than 2.306.

Proof. We first define the density of an item of size x as
the ratio between its weight and area, i.e., w(x)/x2. Given
the lower bound for the size of each square belonging to
class i (1 ≤ i ≤ 12), we can calculate a lower bound for the
density of each item in the class. For tiny items, the density
is simply 1.425x2/x2 = 1.425. Densities for all classes have
been reported in Table 1.

Defining densities comes handy in the following case anal-
ysis to prove that the total weight of items in any bin B of
an optimal packing is at most 2.306.

Case 1: First, assume there is no item of class 1 in B. Since
the density of items of other classes are less than 1.838, even
if B is fully packed with items of the largest density, the
total weight of items cannot be more than 1.838 which is
less than 2.306.

Case 2: In the second case, we assume there is one item
x of class 1 (note that no two items of class 1 fit in the
bin). Without loss of generality, we assume the size of x
is 1/2 + ϵ, where ϵ is a small real value greater than zero.
Clearly, a larger size for x does not increase the total weight
of other items in B because it would leave less space to
occupy more items in the bin (while the weight of x stays 1).
Next, we consider all possible cases in which we have some
items of class 2 and 3 together with x in B. As presented in
Table 2, there will be 14 sub-cases to analyze. To see how we
reach these 14 sub-cases, first note that it is not possible to
accommodate 4 or more items of class 2 in addition to x in
B (i.e., a total number of 5 or more items from these classes
1 and 2). This is because no five items with size larger than
0.3694 can fit in B [12]. A similar argument shows that we
cannot have 6 or more items from classes 1, 2, and 3 together
in a bin, otherwise we could accommodate 6 identical squares
of size strictly larger than 0.3333 which is a contradiction to

total weight area occupied remaining total weight in total weight of

C1 C2 C3 of items of by items of remaining Area remaining area items in the bin

class c ≤ 3 (W ) class c ≤ 3 (A) (Ar = 1− A) (Wr = Ar × 1.543) (W +Wr)

1 0 0 1.00 > 0.250 < 0.750 < 1.157 < 2.157
1 0 1 1.20 > 0.361 < 0.639 < 0.986 < 2.186
1 0 2 1.40 > 0.472 < 0.528 < 0.815 < 2.215
1 0 3 1.60 > 0.583 < 0.417 < 0.644 < 2.244
1 0 4 1.80 > 0.694 < 0.306 < 0.472 < 2.272
1 1 0 1.25 > 0.386 < 0.614 < 0.948 < 2.198
1 1 1 1.45 > 0.497 < 0.503 < 0.776 < 2.226
1 1 2 1.65 > 0.608 < 0.392 < 0.605 < 2.255
1 1 3 1.85 > 0.719 < 0.281 < 0.434 < 2.284
1 2 0 1.50 > 0.522 < 0.478 < 0.738 < 2.238
1 2 1 1.70 > 0.633 < 0.367 < 0.566 < 2.266
1 2 2 1.90 > 0.744 < 0.256 < 0.395 < 2.295
1 3 0 1.75 > 0.658 < 0.342 < 0.528 < 2.278
1 3 1 1.95 > 0.769 < 0.231 < 0.356 < 2.306

Table 2: Fourteen possible cases in which we have a
combination of items of class 2 (C2) and 3 (C3) together
with one item x of class 1 (C1) in a single bin B. Here,
“sum of weights (W )” and “sum of areas (A)” indicate,
respectively, the total weight and area of items of the
first three classes in B. “Remaining area” is the area
left in the bin that is used for packing items of class 4
or higher. “Weight of items in the remaining area” is
an upper bound for the total weight of items of class 4
or higher in B (these items have density no more than
1.543). Finally, “the total weight of items in the bin”
indicate the sum of weights of all items (from all classes)
in B.

the fact that no six items of size larger than 0.3333 can fit
in the same bin [12]. We can conclude that the 14 sub-cases
summarized in Table 2 cover all possibilities for items of the
first three classes in Case 2.

According to Table 1, the density of items belonging to
class i (4 ≤ i ≤ 12) as well as tiny items is at most 1.543
(which is the density of class-4 items). Using a similar ar-
gument made for Case 1, we suppose that, after placing a
certain number of items of class 2 and 3 beside x in B, in
each sub-case, we are able to completely fill the remaining
empty space of B with the items of the maximum density
1.543. This makes us able to calculate an upper bound for
the maximum total weight of items in B for each of the sub-
cases. The resulting bounds for each sub-case can be found
in the last column of Table 2, where the maximum upper
bound among all sub-cases is 2.306, which happens when we
have one item of class 1 in B together with 3 items of class
2 and one item of class 3.

As a result, in both Case 1 and Case 2, the total weight
of items in B cannot be more than 2.306. □
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Preprocessing Imprecise Points for Furthest Distance Queries

Vahideh Keikha∗ Sepehr Moradi† Ali Mohades‡

Abstract

Given is a set of regions in Rd, in the region-based un-
certainty model. We show here how to preprocess these
regions so that if one point per region is specified with
precise coordinates, in the query phase, the diameter
of the query points can be computed faster than the
scratch. We discuss a (1 + ϵ)-approximation algorithm
with running time O( n

ϵd
) for answering such queries,

for a set of pairwise disjoint unit balls, after spending
O(n log n+ n

ϵd
) time for preprocessing.

1 Introduction

It is a common assumption in different areas of compu-
tational geometry that the input is a set of points. How-
ever, we usually face the problems at which the input
data are not precise due to several resources, namely in-
cluding bounded precision of measuring devices, round-
ing errors in calculations, etc. In some cases, we al-
ready know in which region each particular point would
lie, however, the exact locations of the points are still
unknown. One then may assume such a region as an
imprecise point, that could be a disk, rectangle, line
segment, etc.

In recent years, frequent analysis of uncertain data
has been actively researched in computation modeling
of real-world problems. There are numerous exact and
approximation algorithms for processing uncertain data.
Designing an exact algorithm that works for all possible
instances may produce a big data structure and may
need time-consuming calculations. As a result, these
algorithms demand much time and space as their in-
puts are indeed superset compared to the standard al-
gorithm, where the input is a set of points. There have
been efforts to resolve this problem by careful analysis of
the worst-case or the best-case behavior of the input in-
stances, however, all cases are likely to happen. In some
other scenarios, producing the lower and upper bound
for feasible solutions may suffice. Another standpoint
is preprocessing uncertain data for speeding-up the fur-
ther computations on precise instances received later.
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(a) (b)

Figure 1: Problem definition: (a) A set D of 6 imprecise
points modeled as unit balls, (b) and the diameter of two
different realizations of D.

In this paper, we address the diameter problem in this
setting.

Problem 1 (Diameter Query) Let D =
{d1, . . . , dn} be a set of balls in Rd. For a given
query point set Q = {p1, . . . , pn}, where pi ∈ di, our
objective is to find the diameter of Q in o(dn2) time,
after preprocessing. We call the set Q a realization of
D; see Figure 1.

Related work. The region-based model of impreci-
sion was introduced and extensively studied by Löffler
and van Kreveld. Several models are already established
for processing a set of imprecise points for (possibly)
speeding up the sorting problem [17], computing an ar-
bitrary triangulation [9, 18], the Delaunay triangula-
tion [2, 11], and the convex hull of a query set in R2 [4].
In particular, it is previously shown that for a set of im-
precise points modeled as convex polygons, with totally
O(n) vertices, an arbitrary triangulation of a query set
with one point in each region can be computed in O(n)
time after spendingO(n log n) for the preprocessing [18].
The same problem was also studied in [11] at which the
same results also hold for computing a Delaunay trian-
gulation. See also [2, 9]. For a set of imprecise points in
the plane modeled as lines, it is shown that the prepro-
cessing does not speed up the closest pair computation,
the Delaunay triangulation, and the sorting problem on
the realizations received later [4], where they lie on given
lines known in advance. However, in the same paper, it
is shown that preprocessing a set of lines, can speed up
computing the convex hull of the points (on those lines)
received later.

The diameter of a set of points is the maximum pair-
wise distance between the points in the set. Comput-
ing the diameter of a set of points has a long history.
It is shown that computing the diameter in Rd needs

41



5th Iranian Conference on Computational Geometry

Ω(n log n) time in any algebraic decision tree, by a re-
duction from the set disjointedness problem. But the
best-known algorithm for computing the diameter in Rd

takes O(min{nd log n, n2 logs−2 n, n2ds−2}) time, where
s ≈ 2.376 [5, 13]. However, this running time can be im-
proved for specific values of d > 2 [5]. For d = 2, near
linear approximation algorithm exists for the diameter
problem [8]. We refer the reader to [5, 12] for a complete
list of algorithms for the diameter problem in different
dimensions. We note that the diameter problem has ex-
tensively used as a black box in database queries. See,
e.g., [6].

Contribution. We show there exists a (1 + ϵ)-
approximation for approximating the diameter queries
on pairwise disjoint unit disks, that takes O( n

ϵd
) time,

after spending O(n log n + n
ϵd
) time for preprocessing

(Sec 3.2).

2 Preliminaries

For a set Q of points in Rd, let diam(S) denote the
diameter of Q. In the following, we recall the definitions
we use from the literature.

Let G = (S,E) be a geometric graph on Q. Let
dG(p, q) denote the geodesic distance between any pair
p, q ∈ Q, that is defined as the length of the shortest
path between these two points in G. The graph G is
called a t-spanner for some t ≥ 1, if for any two points
p, q ∈ Q we have dG(p, q) ≤ t|pq|, where |pq| is the Eu-
clidiean distance between p and q. The parameter t is
refereed to as the stretch factor.

2.1 Well Separated Pair Decomposition (WSPD)

Let Q be a set of points in Rd. Two sets Pi, Qi ⊆ Q
of points are s-well separated if they can be enclosed
within balls of radius r such that the closest distance
between these balls is at least sr. An s-well sepa-
rated pair decomposition (s-WSPD) of size m for a
point set Q is a set of s-well-separated pairs of sub-
sets {(P1, Q1), . . . , (Pm, Qm)}, where each (Pi, Qi) ⊂
2Q×2Q, and for any pair of points p, q ∈ Q (p ̸= q) there
is a unique index i for which p ∈ Pi, q ∈ Qi. See Fig-
ure 2. Moreover, for any s-well separated pair (Pi, Qi),
for a sufficiently large separation parameter s, we have
approximately equal distances between any two points,
where one lies in Pi and the other lies in Qi. Further-
more, each pair Pi, Qi has two representatives pi ∈ Pi

and qi ∈ Qi, where pi, qi gives an approximation for
distances between any two points from Pi to Qi. It has
been shown that an s-WSPD of O(sdn) pairs can be
computed in O(n log n+ sdn) [3].

We start stating our results with a related question:
Given is a set D of imprecise points modeled by dis-
joint unit balls. The question is determining whether
there exists an spanner G for an arbitrary realization Q

(a) (b)

Pi

Qi

p

q

Figure 2: (a) Illustration of a point set and (b) a well-
separated pair decomposition of it with 4 pairs (com-
puted from the quadtree [14]).

of D such that for any other realization Q′ of D where
Q′ ̸= Q, the graph G remains an spanner forQ′ with the
same stretch factor. Abam et al. in [1] answered this
question positively by introducing a method for com-
puting the WSPD with respect to a separation ratio s′

on the center of the balls. They proved that the com-
puted WSPD remains valid for any realization Q of D,
where the separation ratio s of the WSPD on instances
is calculated according to s = s′−2

2 . Then they create a
spanner that is valid for any realization.

Let D be a set of n unit balls, and let s′ be the separa-
tion ratio, for which one make a WSPD on the centers.
The following result exist:

Lemma 1 (Lemma 1 [1]) Let D be a set of disjoint
unit balls, and let {(Pi, Qi)|1 ≤ i ≤ m} be a WSPD for
the set {c1, . . . , cn} as the centers of the balls in D, with
respect to s′ = 2s+ 2. Let Q = {p1, . . . , pn} be a set of
points, where pj ∈ Dj, for 1 ≤ j ≤ n. For 1 ≤ i ≤ m,
let P ′

i = {pj |cj ∈ Pi} and Q′
i = {pj |cj ∈ Qi}. Then

{(P ′
i , Q

′
i)|1 ≤ i ≤ m} is a WSPD for Q with respect to

s.

2.2 Point Set Diameter Approximation

A (1 + ϵ)-approximation algorithm already exists for
approximating the diameter of a point set in Rd us-
ing WSPD [7] (Chapter 3, Lemma 3.14). Let Q be a
set of n points in Rd. For a given 0 ≤ ϵ ≤ 1, the
objective is computing a pair pu, pv ∈ Q such that
diam(Q)

1+ϵ ≤ ∥pupv∥ ≤ diam(Q). In the following, we
recall the algorithm.

Algorithm: Approximating the Diameter [7].
We first compute an s-WSPD for a point set Q, where
s = 4/ϵ. For each WSPD pair (Pi, Qi), associate a pair
of points as representative points pu ∈ Pi, pv ∈ Qi and
compute the distance between them. See Figure 3. We
then remember the maximum distance among all rep-
resentative points and return it in the end. This would
give a (1 + ϵ)-approximation for the diameter of Q [7].
It is shown that the running time of this algorithm is
O(n log n + sdn) as the WSPD needs to be computed.
Although, the number of candidate pairs realizing the
diameter is only O(sdn).
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≥ sr

2r

2r

pu

pv

y

x

Figure 3: Diameter approximation using WSPD. The
points x, y determine the diameter, and pu, pv approxi-
mate the diameter within a factor 1 + ϵ.

Our method is in fact a combination of Abam et al. [1]
technique in the preprocessing phase for computing a
persistent WSPD which is computed on the disk cen-
ters, and the diameter approximation algorithm [7] in
the query phase, using the computed WSPD in the pre-
processing step.

3 Computing the Diameter after Preprocessing

Observe that for any set D of n imprecise points in R2,
there is no preprocessing with running time o(n log n)
on D to speed-up answering the diameter queries on D
to o(n log n) time. That is because all such problems
simulate the point set case, and it is known that there
is a lower bound Ω(n log n) for the diameter problem in
any algebraic decision tree [12]. In other words, if the
preprocessing takes o(n log n) time, this would result in
an o(n log n) time algorithm for the diameter of a set
of points in the plane. As another variant consider the
input regions as a set of parallel lines in the plane. If
the 2D points are sorted in just a single direction, one
cannot compute their diameter in less than Ω(n log n)
time [15]. Because, if D is a set of parallel lines, e.g.,
along the x-axis, we can only anticipate the x-order of
the points (received later), from which the lower bound
follows.
For a set of unit disks in R2, the diameter query prob-

lem can be solved in O(n) time after spending O(n log n)
time for preprocessing. Let D be a set of unit disks in
the plane. It is known that the Delaunay triangulation
of a realization of D, as the query set, can be computed
in O(n) time after spending O(n log n) time for prepro-
cessing. Hence, the convex hull can be extracted in O(n)
time. Having the convex hull, the diameter also can be
computed in O(n) time, as all the antipodal pairs of a
convex polygon can be computed in O(n) time and the
diameter is among them [16].
In Rd, we focus on approximation algorithms. An ob-

vious constant factor approximation algorithm for this
problem is the smallest enclosing ball (SEB) of a set
of points that approximates the diameter of the points

within a factor
√
3
3 . Consider the configuration at which

four points on the boundary of the SEB forms an equi-
lateral triangular-based pyramid, and the side length of
each triangular face determines the diameter. If one
translates any pair of these points on the boundary of
the SEB, to get closer, the diameter enlarges between

at least one pair. Hence, a (
√
3
3 + ϵ)-approximation of

the diameter of any set of points in Rd can be com-
puted in O(dnz/ϵO(1)) time by using the randomized
O(1+ ϵ)-approximation algorithm in [10] for computing
the SEB of a set of points in Rd, at which z is a pa-
rameter depending on the input 1. Next, we discuss a
(1 + ϵ)-approximation algorithm.

3.1 Preprocessing

In this section, our objective is to preprocess the re-
gions, such that when the exact position of points are
given, one can compute and return an approximation of
the diameter in o(n log n) time. To solve the problem,
in our algorithm we use the aforementioned technique
that returns a (1 + ϵ)-approximation of diameter us-
ing WSPD on the point set in O(n/ϵ2). However, we
need to compute the WSPD on the point set accord-
ing to a specific separation factor s = 4

ϵ , but it takes
O(n log n+ s2n) time and makes the algorithm useless.
Therefore, in the case where the input is a set of disks,
we use Abam et al. [1] technique for computing a WSPD
on the center points of the disks with the separation pa-
rameter s′ = 2s+ 2, which has been proved that would
be valid for any realization according to separation fac-
tor s. Hence, we do not need to compute the WSPD on
each instance, and the WSPD is computed only once in
the preprocessing phase.

Lemma 2 Let {(Ai, Bi)|1 ≤ i ≤ m} be a WSPD on
the set {c1, . . . , cn} of given disjoint unit disks with re-
spect to s′ = 8

ϵ + 2. Let Q = {p1, . . . , pn} be a set of
points, where pj ∈ Dj, for 1 ≤ j ≤ n. For 1 ≤ i ≤ m,
let A′

i = {pj |cj ∈ Ai} and B′
i = {pj |cj ∈ Bi}. Then

{(A′
i, B

′
i)|1 ≤ i ≤ m} is a WSPD for Q with respect to

s = 4
ϵ .

Proof. According to Lemma 1 the {(A′
i, B

′
i)|1 ≤ i ≤

m} would be a valid WSPD for any instance with re-

spect to separate factor s = s′−2
2 . We assumed the sep-

arate factor of the WSPD on the center points is s′ =
8
ϵ + 2, so we have: s = s′−2

2 =
( 8
ϵ+2)−2

2 =
8
ϵ

2 = 4
ϵ . □

3.2 Query Phase

Now, when we are given a realization of the balls, we
wish to compute a (1+ϵ)-approximation of the diameter
in O(n/ϵd) time. It follows from Lemma 2 that we can

1We note this is the best-known algorithm for computing the
SEB, that has a linear dependency on d.
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do this by having a WSPD on the center points with
respect to separation factor s = 4

ϵ . In addition, our
WSPD is valid for any other realization.

Theorem 3 For any given set D = {D1, . . . , Dn} of n
imprecise points modeled as the same size balls which
are pairwise disjoint, a (1+ ϵ)-approximation of the di-
ameter of a realization Q of D can be computed in O( n

ϵd
)

time, after O(n log n+ n
ϵd
) preprocessing time.

Proof. Let s = 4
ϵ and s′ = 2s + 2 = 8

ϵ + 2 and
Q = {p1, . . . , pn} be the set of precise points. Let
{(Ai, Bi)}i=1,...,m be an s′-WSPD for the center points,
of size m = O(s′2n), and let A′

i = {pj |cj ∈ Ai},
B′

i = {pj |cj ∈ Bi}. It follows from Lemma 1 that
{(A′

i, B
′
i)|1 ≤ i ≤ m} is a WSPD for Q with respect

to separation parameter s = 4
ϵ .

Then, we associate one point to each set as the repre-
sentative point, let pa ∈ A′

i and pb ∈ B′
i be the represen-

tative points of the sets A′
i and B′

i respectively. From
the presented approximation algorithm for the diameter
in [7], by calculating the distance between representa-
tive points of each pair and computing the maximum
distance among all, we have a (1 + ϵ)-approximation of
the diameter of any realization in O(s′dn) time. □

4 Discussion

The main open question is finding an algorithm for
the general version, as our approach cannot be ex-
tended to overlapping disks or disks of arbitrary size.
We note that since the WSPD gives the nearest neigh-
bour pairs in a set of points, our results give also an
O(1)-approximation algorithm for the nearest neigh-
bour query for a realization of D in high dimensions.
Acknowledgement The authors would like to thank
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[11] M. Löffler and J. Snoeyink. Delaunay triangulation
of imprecise points in linear time after preprocess-
ing. Comput. Geom., 43(3):234–242, 2010.

[12] G. Malandain and J.-D. Boissonnat. Computing
the diameter of a point set. Internat. J. Comput.
Geom. Appl., 12(06):489–509, 2002.

[13] F. P. Preparata and M. I. Shamos. Computa-
tional Geometry: an Introduction. pages 95–149.
Springer, 1985.

[14] H. Samet. The quadtree and related hierarchi-
cal data structures. ACM Computing Surveys
(CSUR), 16(2):187–260, 1984.

[15] R. Seidel. A method for proving lower bounds
for certain geometric problems. In Machine Intel-
ligence and Pattern Recognition, volume 2, pages
319–334. Elsevier, 1985.

[16] M. I. Shamos. Computational geometry. Ph.D.
Thesis. 1978.

[17] I. van der Hoog, I. Kostitsyna, M. Löffler, and
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The final problem I worked on with Saeed Mehrabi∗

Prosenjit Bose†

The last problem that I worked on with Saeed was a problem called the “Boundary Labeling problem”. The
essence of the problem is the following: Given a set of objects inside a rectangle, we wish to label these objects where
the labels are located outside the rectangle. The goal is to draw a curve from each object inside of the rectangle
to the label outside the rectangle. There are many variants of the problem, such as restricting which sides of the
rectangle the curve is allowed to intersect, forbidding curves from intersecting or restricting the type of curve that
is allowed. There are also some optimization questions such as whether one can minimize the total length of the
curves. I will review the results that Saeed and I and our co-authors obtained for this family of problems.

∗In memory of Saeed Mehrabi, former PC of ICCG, who passed away unexcpectedly.
†School of Computer Science, Carleton University, Ottawa, Canada, jit@scs.carleton.ca
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